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Localizing the pulse energy in a shorter area of pulse duration using 
asymmetric pulses, created by tuning the second pulse frequency,
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Light-Matter interactions are simulated using ab-initio TDDFT 
framework with Octopus code on the basis of Kohn-Sham equation

Self-consistent calculations

𝑖𝑖(𝑡𝑡) ∝ ∫ 𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝜕𝜕
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IAP Generation

𝐼𝐼 𝑡𝑡 = ∑𝜔𝜔𝑖𝑖

𝜔𝜔𝑓𝑓 𝐹𝐹𝐹𝐹 𝜕𝜕𝑖𝑖(𝑡𝑡)
𝜕𝜕𝜕𝜕

2

IAPs can reveal microscopic details
of the physical processes such as
electron motion in materials, bond
creation or bond breaking, and
ultrafast, sub-optical-cycle,
quantum mechanical phenomena

~ Attosecond

Light-Matter interactions are simulated using ab-initio TDDFT 
framework with Octopus code on the basis of Kohn-Sham equation

Self-consistent calculations

𝑖𝑖(𝑡𝑡) ∝ ∫ 𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕(𝑟𝑟, 𝑡𝑡)
𝜕𝜕𝜕𝜕
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One color pulse HHG 3/8

Fundamental pulse properties
Applied pulse parameters:

𝜆𝜆 = 1800 nm
Vacuum intensity:1013W/cm2  E ≃ 0.6 V/Å
Pulse duration, full width at half maximum (FWHM): 18 fs
Laser electric field direction: 100
The pulse envelope shape: sin2(𝑡𝑡/𝛿𝛿)

The time-frequency analysis a train of attosecond pulses

Noisier signals for above bandgap
Phys. Rev. Lett. 118, 087403 (2017).

MgO crystal (RS structure)

Electric field: Vector potential time derivative 

𝐸𝐸 𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝜕𝜕
𝐴𝐴(𝑡𝑡)

𝐴𝐴 𝑡𝑡 = 𝐴𝐴0sin2(𝑡𝑡𝜋𝜋/𝛿𝛿) sin(𝜔𝜔0𝑡𝑡)
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Two-color pulse impacts 4/8

Second pulse strength, frequency and phase differencepulse shape and HHG spectra

 Using two-color intense pulses, IAPs of duration as short as ∼ 200-300 as are extracted from the harmonic emission in EUV range.
 Much shorter than what measured experimentally in SiO2 nanofilm (470 as) [Nat. 538, 359] or the ab initio prediction of IAP duration in MoS2

monolayer (2280 as) [APL 116, 043101].
 The energy windows to extract the IAPs are much wider than the calculated bandwidth in MoS2 (16-20 eV) and that measured in SiO2 (18-28 eV).

For example, the filtering area in (a) starts from 17.5 eV and cover the EUV energy range up to 43 eV.
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Two color vs one color pulses: HHG and IAPs 5/8

 IAP duration for two-color pulses shows no serious dependence to electric
field strength which reveals the importance of asymmetric pulse in IAP
generation.

 Shorter IAPs and wider band width for two-color pulses
 Electric field enhancement increases the brightness of IAPs as well as HHG

cutoff energy
 Asymmetric pulses yield shorter energy cutoff than single-color pulses

two-color pulses one-color pulses
𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.7 V/Å increasing 0.8 V/Å 

|electric field|     band structure curvature  intraband dynamics

|vector potential|      band gap  interband dynamics

𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1.4 V/Å 0.9 V/Å 
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linearly polarized pulse: Anisotropy impacts 6/8

𝐴𝐴 𝑡𝑡 = 𝐴𝐴0 sin2(𝑡𝑡/𝛿𝛿) [sin 𝜔𝜔𝜔𝜔 + 1/2 × sin 2𝜔𝜔𝜔𝜔 + 1 ]

 Stronger HHG/more efficient IAP for [100] polarized 
pulse

 Addition to the pulse asymmetry, IAP are strongly
influenced by the crystal orientation.

 Attochirp appearance: illustration of the complex 
attosecond dynamics occurring within the MgO 
bands. 

Phys. Rev. Lett. 118, 087403 (2017).
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�𝜃𝜃 Cutoff energy

0 36 eV

45∘ 27 eV

90∘ 25 eV

Fundamental pulse polarization along [100]

Second pulse polarization
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Our work prepares future all solid-state compact optical devices offering perspectives beyond traditional IAP emitted
from atoms.
More details will be found in High harmonics and isolated attosecond pulses from MgO, Z. Nourbakhsh, et al.
(arXiv:2010.08010v1 )

TD-DFT calculations of the time evolution of the electronic wave functions are performed using octopus code

Extracting IAPs as short as ∼ 200-300 as from the
harmonic emission in EUV range from MgO

Anisotropic behavior of MgO harmonic emissions, and
stronger HHG/more efficient IAP for [100] light polarized.

Rapidly dropping of HHG signals for the elliptical polarized
pulses, but providing elliptically polarized IAPs.

Linear dependence of cutoff energy to the driving laser peak
field and independency of cutoff to the pulse wavelength.

Attochirp appearance for harmonics between 15-21 eV with
presenting a plateau in the HHG spectrum, and the lying conduction
bands in the band structure

https://arxiv.org/abs/2010.08010v1
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