

Neural Network based pulse shape analysis with the Belle II electromagnetic calorimeter

5th of November 2020

Women Physicists' Conference

Stella Wermuth

≥ stella.wermuth@desy.de

Belle II overview

- SuperKEKB e^+e^- collider in Japan
- Collision energy: 10.58 GeV
- Main goals of Belle II:
 - Precision measurements
 - Rare/forbidden processes
 - Beyond Standard Model search

https://www.belle2.org/project/super_kekb_and_belle_ii

Electromagnetic Calorimeter (ECL)

https://www.belle2.org/project/super_kekb_and_belle_ii

~9000 scintillator crystals CsI(TI)

Main task:

- Measuring electromagnetic energy
- Reconstructing neutral particles
- Particle identification using shower shapes

Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma$

Need good particle identification!

Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma$

Reduce uncertainty of SMcalculation of the anomalous magnetic momentum of the muon

What happens in the ECL?

- = ECL crystal
- = ECL crystal where energy is deposited

What happens in the ECL?

FPGA

- Fit pulse shape
- Reconstruct E_{total}
- Optimized for photons

Particle Identification with the ECL

Pulse Shape Discrimination

- Multi-template fit (photon and hadron template)
- Offline
- Reconstruct E_{total}, E_{hadron}

Hadron Intensity =

Keywords to remember:

- Pulse shape:
 - 31 ADC points
 - Difference between photon-like and hadron-like pulse shapes
- Default methods:
 - FPGA: E_{total}, optimized for photons (online)
 - Multi-template: E_{total} , E_{hadron} (offline)

Hadron Intensity =
$$\frac{E_{had}}{E_{tot}}$$

Neural Network approach

What can we gain by using a Neural Network instead of a multi-template fit? (speed, precision, robustness)

Neural Network structure

- Fully connected NN
- 2 hidden layers (256 neurons each)
- 31 inputs (normalized ADC counts)
- 2 outputs (E_{tot}, E_{had})

Particle:

Photons as proxy for EM interactions

Pions as proxy for hadronic interactions

Particle:

Photons as proxy for EM interactions

Pions as proxy for hadronic interactions

Stability tests:

Particle:

Photons as proxy for EM interactions

Pions as proxy for hadronic interactions

Stability tests:

Neural Network input photons

- Trained with ~400 000 pulse shapes
- Tested with ~80 000 pulse shapes

Neural Network E_{total} prediction

Neural Network E_{total} resolution

Particle:

Photons as proxy for EM interactions

Pions as proxy for hadronic interactions

Stability tests:

Baseline fluctuations: fittype (FT)

- Assigned by multi-template fit
- Fittype = 0 good
- Fittype = 1 additional peak
- Fittype = -1 bad

Baseline fluctuations: fittype (FT)

Particle:

Photons as proxy for EM interactions

Pions as proxy for hadronic interactions

Stability tests:

Neural Network input pions

- Trained with ~328 000 pulse shapes
- Tested with ~82 000 pulse shapes

Neural Network E_{tot} & E_{had} resolution

E_{had} resolution

hadron resolution improved for photon-like pulse-shapes

Particle:

Photons as proxy for EM interactions

Pions as proxy for hadronic interactions

Stability tests:

Train with pions, infer on photons

What is next?

Running Neural Network

Data & Analysis

- Move towards data
- Look at $\pi\pi\gamma$ analysis
- See if NN can improve π/μ -separation
- Reduce μ -background
- Reduce systematic uncertainty

Summary

- Running Neural Network for pulse shape analysis
- Performance compared with multi-template and FPGA fit
- Results:
 - Improved E_{tot} and E_{had} -resolution (for pions up to 200 MeV)
 - Stable with respect towards fittype
- Interesting application: $e^+e^- \rightarrow \pi^+\pi^-\gamma$
- Implement ML on FPGA (new PhD project starting soon)

Back Up.

Traditional Particle Identification

- Measure track → momentum (CDC)
- Measure velocity (TOP)
- Combine information for mass

• π/μ -separation hard, tracks too close

Excursion: g-2 muon

- High precision measurement of the anomalous magnetic momentum of the muon
- 3.7σ discrepancy (<u>arXiv:2006.04822</u>, 2020 paper)
- Theory limited by $e^+e^- \rightarrow \pi^+\pi^-$

A. Keshavarzi, D. Nomura, T. Teubner arXiv:1911.00367 [hep-ph]

Excursion: theory of g-2

A. Hoecker and W. J. Marciano, 2013 "The Muon Anomalous Magnetic Moment"

QCD: Needs to be measured

Excursion: theory of g-2

Improve precision of g-2 theory by improving precision of the measurement of this process

Analysis: $e^+e^- \rightarrow \pi^+\pi^-\gamma$

FPGA Fit within the ECL

A. Sibidanov, https://docs.belle2.org/record/800/files/BELLE2-TALK-CONF-2018-019.pdf

- Two photodiodes
- Pre-amplifier (integrate and shape the signal)
- Sum
- ShaperDSP (shaping amplifier, tail subtraction)
- Digitizer (into 31 ADC points)
- FPGA (template fit, photon)

Multi-template fit

- All pulse shapes with energy above 50 MeV are stored for offline analysis
- Photon template:
 - pure photon scintillation component emission
 - Use Bhabha scattering events for computing the templates
- Hadron template
 - pure hadron scintillation component emission
 - Compute with input from signal chain response and testbeam study
- Need to compute signal chain output for calibration (11 parameters for template for each crystal)

Cluster resolution

Neural Network hadron intensity

Beam background

Trained with run 3363, infered on run 3363 and 5649 separatly

