Line Intensity Mapping targeting Astrophysics and Cosmology

Caroline Heneka

Hamburg University EXC Quantum Universe

Physikerinnentagung Hamburg - Online Nov 6th, 2020

Partly based on: CH+ ApJ, 848 (2017), Heneka & Amendola JCAP10(2018)004, Liu+ JCAP05 (2020) arXiv: 1611.09682, 1805.03629, 1910.02763, see also: 1805.11044, 1903.03144, 1903.03629, 1903.11744 Collaborators: Luca Amendola, Xue-Wen Liu, Asantha Cooray, Andrei Mesinger

A brief history of time ...and the Universe

What astrophysics? Reionization model? What cosmology? Structure growth?

A brief history of time ...and the Universe

Goal: Push measurements to tomography, up to high redshifts, for mapping of large number of modes and time evolution during structure formation

Why Intensity Mapping

What is the (large scale) structure of the Universe? What are properties of radiating sources?

To find out, we can identify individual sources of emission.

Image: Courtesy of Asantha Cooray

Why Intensity Mapping

What is the (large scale) structure of the Universe? What are properties of radiating sources?

To find out, we can identify individual sources of emission.

OR

We can sum the emission in larger areas and measure fluctuations.

Example: Planck satellite for the CMB

Image: Courtesy of Asantha Cooray

Is this measurable?

What is measurable?

Multi-Line Intensity Mapping

[CDIM

Science

Report,

Heneka

2019]

Gain complementary information on LSS, IGM, sources:

Optical Emission lines = near-IR lines during reionization (high redshift)

Intensity Mapping - for Astrophysics

Gain complementary information on LSS, IGM, sources: auto and cross-signals

[CDIM

2019]

Optical Emission lines = near-IR lines during reionization (high redshift)

Simulations: neutral - 21 cm

Simulations: (partially ionised) - Lya

Simulations: (partially ionised) - Lya

- Follow reionisation progress, growth of ionised regions
- Parameter dependencies, e.g. escape fraction and SFR

Heneka, Cooray, Feng, ApJ, 848 (2017)

Example: Lya x Ha

Multi-Line Intensity Mapping

[CDIM

Science

Report,

Heneka

2019]

Gain complementary information on LSS, IGM, sources:

Optical Emission lines = near-IR lines during reionization (high redshift)

Offset 21-cm brightness temperature:

$$\delta T_b \left(\nu \right) = \frac{T_S - T_\gamma}{1 + z} \left(1 - e^{-\tau_{\nu_0}} \right)$$
$$\propto x_{HI} \left(1 + \delta_{nl} \right) \left(\frac{H}{\mathrm{d}v_r/\mathrm{d}r + H} \right)$$

Growth evolution:

$$\delta_m'' + \left(2 + \frac{E'}{E}\right)\delta_m' = \frac{3}{2}\frac{\delta_m}{a^3 E^2}\Omega_{m,0}Y$$

with IC: $\alpha = \delta'_{in}/\delta_{in}$

Caroline Heneka - LIM targeting Astrophysics and Cosmology

C. Heneka & L. Amendola, 2018

For cosmological parameters only:

 $\Delta Y \sim 0.006$ $\Delta \alpha \sim 0.06$

'the optimist'

Plus reionization parameters:

 $\Delta Y \sim 0.013$

 $\Delta \alpha \sim 0.119$ + order % errors on other parameters

Tomography is key!

 $P_{ij} =$

From cosmological parameters only:

 $\Delta Y \sim 0.006$ $\Delta \alpha \sim 0.06$

Cut non-linear scales $\Delta Y \sim 0.12$

 $\Delta \alpha \sim 0.88$

Shot-noise cut $\Delta Y \sim 0.04$ $\Delta \alpha \sim 0.34$

Important to model (mildly) non-linear scales!

Beyond GR: What to learn from 21cm P(k) + global signal

Choose a coupled quintessence setup:

Q ~ coupling to DM $\nabla_{\mu}T^{\mu}_{\nu(\phi)} = -I_{\text{int}}$ $\nabla_{\mu}T^{\mu}_{\nu(\text{dm})} = +I_{\text{int}}$ $I_{\text{int}} = QT_{\text{dm}}\nabla_{\nu}\phi$

Fisher forecast for1) fiducial global experiment2) power spectra (SKA)

[Normalized to same growth at CMB]

Liu, Heneka, Amendola, 2020

 λ ~exp. potential

 $V\left(\phi\right) = V_0 e^{-\lambda\phi}$

Beyond GR: What to learn from 21cm P(k) + global signal

Fisher forecast for1) fiducial global experiment

Beyond GR: What to learn from 21 cm P(k) + global signal

Fisher forecast for1) fiducial global experiment2) power spectra (SKA)

Main take away

- global signal improves constraints $\Omega_{\rm dm}$

0.03	(The second	10 10 10 10 10 10 10 10 10 10 10 10 10 1					and the second second
1)		$T_{\rm vir}({\rm K})$	Q	$\Omega_{ m dm}$	$\log(\zeta_{\rm X})$	f_*	
0.0	fiducial	4×10^4	0.0	0.256	129.638	0.05	
0.26	<i>λ</i> =1.0	222.71(0.56%)	0.022	0.0055(2.1%)	0.22(0.169%)	0.0034(6.8	%)
d 0.25	$\lambda = 0.1$	118.59(0.29%)	0.098	0.0043(1.7%)	0.097(0.075%) 0.0036(7.2	%)
110.00	-				\frown		
2)		$T_{\rm vir}({\rm K})$	Q	$\Omega_{ m dm}$	ζ	$R_{\rm MFP}({\rm Mpc})$	f_*
9 129.20	fiducial	4×10^{4}	0.0	0.256	20.0	31.5	0.05
0.05	$\lambda = 1.0$	3897.1(9.7%)	0.044	0.094(36.6%)	2.79(13.9%)	3.04(9.6%)	0.043(85.9%)
L 0.05	$\lambda = 0.1$	2800.2(7.0%)	0.036	0.099(38.6%)	2.76(13.8%)	3.58(11.4%)	0.039(77.9%)
20.04							
	39600.00 40000. T _{vir}	00 40400.00 0.03 0.0 Q		0.248 0.256 0.264 Ω _{ctm}	129.20 129.60 $130Log(\zeta_X)$.00 0.04 0.05 f+	

Liu, Heneka, Amendola, 2020

Beyond GR: What to learn from 21cm P(k) + global signal

Main take

away

Fisher forecast for1) fiducial global experiment2) power spectra (SKA)

- global signal improves constraints $\Omega_{\rm dm}$
- similar constraints on Q
- (mildly) dependent on λ

							the second se
1)		$T_{\rm vir}({\rm K})$	Q	$\Omega_{ m dm}$	$\log(\zeta_{\rm X})$	f_*	C Arrend
	fiducial	4×10^4	0.0	0.256	129.638	0.05	
0.20	$\lambda = 1.0$	222.71(0.56%)	0.022	0.0055(2.1%)	0.22(0.169%)	0.0034(6.89	%)
G 0.25	$\lambda = 0.1$	118.59(0.29%)	0.098	0.0043(1.7%)	0.097(0.075%)) 0.0036(7.29	%)
130.00							
2)		$T_{\rm vir}({\rm K})$	Q	$\Omega_{ m dm}$	ζ	$R_{\rm MFP}({\rm Mpc})$	f_*
9	fiducial	4×10^{4}	0.0	0.256	20.0	31.5	0.05
	$\lambda = 1.0$	3897.1(9.7%)	0.044	0.094(36.6%)	2.79(13.9%)	3.04(9.6%)	0.043(85.9%)
L 0.05	$\lambda = 0.1$	2800.2(7.0%)	0.036	0.099(38.6%)	2.76(13.8%)	3.58(11.4%)	0.039(77.9%)
0.04							
	39600.00 40000 T _{vii}	.00 40400.00 0.03 0.0 C		0.248 0.256 0.264 Ω _{dm}	129.20 129.60 $130.Log(\zeta_X)$	00 0.04 0.05 f.	

<u>iu, Heneka, Amendola, 2020</u>

Intensity Mapping for Astro and Cosmo

- Avenue to probe cosmology and astrophysics
 %-precision even for extended models within reach
- Tomography is key
- Also large scale structure needs the non-linear

Ongoing & Upcoming:

cosmo@caroline-heneka.de, www.caroline-heneka.de