A black hole as big as a universe?

Betti Hartmann

Instituto de Física de São Carlos, Universidade de São Paulo, Brazil Carl-von-Ossietzky Universität Oldenburg, Germany Jacobs University Bremen, Germany

> 6 November 2020 Physikerinnentagung Hamburg

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Betti Hartmann A black hole as big as a universe?

ヘロト 人間 とくほとくほとう

æ

Betti Hartmann A black hole as big as a universe?

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Solitons

localized, finite energy, stable, regular (particle-like) solutions in flat and curved space-time

Topological solitons

- carry topological charge (non-trivial vacuum manifold)
- In theories with spontaneous symmetry breaking
- Examples: (Cosmic) Strings, Monopoles, Domain walls ...

Non-topological solitons

- carry globally conserved Noether charge
- In theories with continuous symmetry
- Examples: *Q*-balls, boson stars ...

くロト (過) (目) (日)

Black holes

- form whenever mass M collapses to within its Schwarzschild radius $r_s = 2m, m = MG/c^2$
- physical singularity hidden behind event horizon
- event horizon $r = r_s$: infinite redshift of photons
- come in different masses
 - supermassive $(10^6 10^9 M_{sun})$
 - stellar mass (a few M_{sun})
 - primordial (atomic)

ヘロン ヘアン ヘビン ヘビン

э

A black hole as big as a universe?

Black holes (BHs)

- Exact solutions of the full, i.e. non-linear Einstein equation
- Simplest case: vacuum ¹

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

with $m = MG/c^2$

• r = 0 is a physical singularity

¹Schwarzschild, 1916

ヘロト ヘアト ヘビト ヘビト

ъ

Some analytically given BH solutions

Vacuum (uncharged) or + electromagnetic field (charged)

	Non-rotating (static) J=0	Rotating (stationary) J ≠ 0
Uncharged Q = 0	Schwarzschild (1916)	Kerr (1963)
Charged Q ≠ 0	Reissner- Nordström (1916)	Kerr-Newman (1965)

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Simplicity of BHs : Theory

- ISRAEL'S THEOREM²: The only static vacuum (charged) space-time being non-singular (on and outside the horizon) is the spherically symmetric Schwarzschild (Reissner-Nordström) space-time.
- STRONG RIGIDITY THEOREM ³ : **Stationary rotating** black holes are either **axisymmetric** or have a non-rotating horizon.
- NO-HAIR THEOREM⁴: A stationary rotating black hole solution to the vacuum (Maxwell-) Einstein system is uniquely determined by its mass, angular momentum (and charge) and described by the corresponding Kerr(-Newman) solution.

²Birkhoff, 1923; Israel, 1967/1968

³Hawking, 1973

⁴Wheeler, 1971; Carter, 1972; Robinson, Mazur, 1982; Chrusciel, 1996; and many more 🕨 🛪 🚊 🕨 🛓 🚽 🔍 🔍

Simplicity of BHs : Observations

Gravitational waves @ LIGO/VIRGO⁵

- merger of two black holes
- O(10) solar masses, i.e. astrophysical
- Final black hole very well described by Kerr black hole
- only gravitational waves (and no other radiation) emitted

3

⁵LIGO/VIRGO collaboration, since 2015

Simplicity of BHs : Observations

Shadow of black hole @ Event Horizon Telescope (EHT) ⁶

- supermassive black hole (6.5 billion solar masses)
- at center of galaxy M87
- event horizon radius approx.
 120 x Earth-Sun distance
- emission from plasma close to horizon observed in radiowaves (1.3 mm)
- "picture" compatible with that of Kerr black hole

(4回) (1日) (日)

⁶EHT Collaboration, since 2019

Interpretation

Betti Hartmann A black hole as big as a universe?

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Why scalar fields?

Scalar fields

- appear in (nearly) all extensions of SM + GR, e.g. Kaluza-Klein theory, String Theory, Supergravity, ...
- are important in early universe cosmology, e.g. scalar field ("inflaton") driving exponential expansion of early universe (inflation)⁷
- are often used to describe collective phenomena, e.g. superconductivity⁸

No scalar hair theorem: ⁹

A static, asymptotically flat, bare black hole can be endowed with **no** exterior classical massive or massless, charged or uncharged, real or complex valued scalar fields.

⁷Starobinsky, 1980; Guth, 1981; Linde, 1982

⁸Ginzburg, Landau, 1950

⁹Chase, 1970; Bekenstein, 1972 & 1995; Heusler 1992; Sudarsky, 1995 🛛 🗸 🗆 ד 🖉 ד 🖈 👘 🖉 👘 👘

Uncharged *Q*-balls & Boson stars

Complex scalar field with potential $V(|\Phi|)$ coupled to GR ¹⁰ ¹¹

$$S = \int \mathrm{d}^4 x \; \sqrt{-g} \left(\frac{R}{16\pi G} - \partial_\mu \Phi^* \partial^\mu \Phi - V(|\Phi|) \right)$$

with scalar field potential

$$V(|\Phi|) = m_{\Phi}^2 |\Phi|^2 + V_{\text{int}}(|\Phi|)$$

 m_{Φ}^2 : scalar boson mass $V_{\mathrm{int}} \sim \mathcal{O}(|\Phi|^4)$ self-interaction

• invariant under global U(1) symmetry $\Phi \to \exp(i\alpha)\Phi$, $\alpha \in \mathbb{R}$

\Rightarrow globally conserved Noether charge Q_N

 $^{11}c = \hbar \equiv 1$ here and in the following

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

¹⁰Kaup, 1968; Ruffini & Bonazzola, 1969; Jetzer, 1992; Mielke & Schunck, 2003

Uncharged Q-balls and boson stars

• spherically symmetric solutions

$$\Phi = \exp(i\omega t)\phi(r)$$

with ω constant, real \rightarrow harmonic time-dependence

- flat space-time limit: *Q*-ball ¹² needs (at least) $V_{\rm int} \sim |\Phi|^6/m_\Phi^2 - |\Phi|^4$
- boson star with $V_{\rm int}=0$: mass $M/M_{\rm sun}\sim 10^{-10}~{\rm eV}/m_{\Phi}$
- boson star with $V_{\rm int} \sim |\Phi|^6/m_\Phi^2 |\Phi|^4$: mass $M/M_{\rm sun} \sim (10^{15} {\rm eV}/m_\Phi)^3$
- viable alternative to supermassive BHs, but without
 - event horizon
 - physical singularity

¹²Coleman, 1986

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Charged Q-balls & boson stars

• global U(1) symmetry can be gauged \rightarrow charged generalization:

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - ieA_{\mu} \quad , \quad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

- spherically symmetric case
 - electric field $\vec{E} = -\partial_r v(r) \vec{e_r}$, $A_t(r) = v(r)$ electric potential

•
$$\omega \to \Omega := \omega - ev_{\infty}, v_{\infty} = v(\infty)$$

• electric charge $Q = eQ_N$, Q_N Noether charge

Q-clouds on Schwarzschild black holes

Hod, 2012; Hong, Suzuki, Yamada, 2019; Herdeiro & Radu, 2020

Betti Hartmann A black hole as big as a universe?

Q-clouds: electric charge of the cloud

Betti Hartmann A black hole as big as a universe?

Two different Q-cloud solutions

For the exact same values of the couplings: two distinct solutions

Betti Hartmann A black hole as big as a universe?

Backreaction of Q-cloud on black hole

Y. Brihaye, BH, arxiv: 2009.08293 branch 1: strong backreaction \rightarrow extremally charged black hole + singular scalar field

Increasing gravitational

backreaction

Backreaction of Q-cloud on black hole

Y. Brihaye, BH, arxiv: 2009.08293 branch 2: strong backreaction \rightarrow extremally charged black hole + constant scalar field

Charged Boson stars at strong backreaction

Y. Brihaye, F. Cônsole, BH, arxiv: 2010.15625 branch 2: strong backreaction \rightarrow extremally charged black hole with cosmological horizon + constant scalar field

Betti Hartmann A black hole as big as a universe?

・ロト ・四ト ・ヨト ・ヨト

æ

- Static, spherically symmetric black holes can carry scalar hair if
 - scalar field complex charged under U(1)
 - harmonic time dependence of scalar field $\sim \exp(i\omega t)$
 - (at least) 6th order self-interaction
 - resonance condition $\omega = ev(r_h)$ fulfilled
- Typically two different branches of solutions
 - branch 1: cloud localized on horizon; horizon and cloud carry electric charge
 - branch 2: cloud strongly extended; nearly all charge in the cloud
- Gravitational backreaction of Q-cloud
 - branch 1: scalar cloud disappears; formation of extremal black hole; diverging scalar field derivative on horizon
 - branch 2: scalar field constant inside cloud → potential scalar field energy → solution forms cosmological horizon that looks like extremal black hole from outside

Thank you for your attention

イロト 不得 とくほ とくほ とう

₹ 990