Gravitational Wave Astronomy

Gabriela González

Louisiana State University

(Results presented on behalf of the LIGO Scientific Collaboration and the

Virgo Collaboration)

November 7, 2020

Physikerinnentagung2020

Gravitational waves

The first gravitational wave detected on September 14, 2015, produced by merging black holes 400 Mpc away had a peak amplitude $h \sim 10^{-21}$.

GW detectors network

Sept 14 2015

February 11, 2016: We did it!

Advanced LIGO: complicated instruments!

Not just one signal

01-02 (2015-2017)

Phys. Rev. X 9, 031040 (2019)

Testing General Relativity ((O)) VIRGO

Phys. Rev. D 100, 104036 (2019)

Event	Properties				SNID	GR tests performed				
	$D_{\rm L}$	$M_{\rm tot}$	M_{f}	$a_{\rm f}$	SINK	RT	IMR	PI	PPI	MDR
	[Mpc]	[<i>M</i> _☉]	[<i>M</i> _☉]							
GW150914 ^b	430^{+150}_{-170}	$66.2^{+3.7}_{-3.3}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$25.3^{+0.1}_{-0.2}$	1	1	1	1	1
GW151012 ^b	1060^{+550}_{-480}	$37.3^{+10.6}_{-3.9}$	$35.7^{+10.7}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$9.2^{+0.3}_{-0.4}$	1	3 	3 	1	1
GW151226 ^{b,c}	440^{+180}_{-190}	$21.5^{+6.2}_{-1.5}$	$20.5^{+6.4}_{-1.5}$	$0.74_{-0.05}^{+0.07}$	$12.4_{-0.3}^{+0.2}$	1	1. -	1	-	1
GW170104	960^{+440}_{-420}	$51.3^{+5.3}_{-4.2}$	$49.1_{-4.0}^{+5.2}$	$0.66^{+0.08}_{-0.11}$	$14.0^{+0.2}_{-0.3}$	1	1	1	1	1
GW170608	320^{+120}_{-110}	$18.6^{+3.1}_{-0.7}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$15.6^{+0.2}_{-0.3}$	1		1	1	1
GW170729 ^d	2760^{+1380}_{-1340}	$85.2^{+15.6}_{-11.1}$	$80.3^{+14.6}_{-10.2}$	$0.81_{-0.13}^{+0.07}$	$10.8^{+0.4}_{-0.5}$	1	1	2 <u></u>	1	1
GW170809	990^{+320}_{-380}	$59.2^{+5.4}_{-3.9}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$12.7^{+0.2}_{-0.3}$	1	1	-	1	1
GW170814	580^{+160}_{-210}	$56.1^{+3.4}_{-2.7}$	$53.4^{+3.2}_{-2.4}$	$0.72\substack{+0.07 \\ -0.05}$	$17.8^{+0.3}_{-0.3}$	1	1	1	1	1
GW170818	1020^{+430}_{-360}	$62.5^{+5.1}_{-4.0}$	$59.8^{+4.8}_{-3.8}$	$0.67^{+0.07}_{-0.08}$	$11.9^{+0.3}_{-0.4}$	1	1	-	1	1
GW170823	1850^{+840}_{-840}	$68.9^{+9.9}_{-7.1}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$12.1_{-0.3}^{+0.2}$	1	1	0 <u></u>	1	1

- RT: If we subtract the best fit from data, are residuals inconsistent with instrumental noise?
- IMR: Are parameters obtained when fitting the inspiral phase different than those fitting the merger-ringdown phase?
- PI/PPI: If we parameterize the inspiral/post-inspiral phase, do we find deviations from the GR parameters?
- MDR: Do we have evidence of a modified dispersion relation (a.k.a. as graviton mass)? Ans: m_{α} <10⁻²³ eV/c²

Nuclear physics with GWs

$$\Lambda = \frac{2}{3}k_2\left(\frac{R}{m}\right)^2$$

Cosmology with GWs

GW-GRB observation: Fundamental physics

$$-3 imes 10^{-15} \leqslant rac{\Delta v}{v_{
m EM}} \leqslant +7 imes 10^{-16}.$$

$$-2.6 \times 10^{-7} \leqslant \gamma_{\rm GW} - \gamma_{\rm EM} \leqslant 1.2 \times 10^{-6}. \tag{4}$$

The best absolute bound on $\gamma_{\rm EM}$ is $\gamma_{\rm EM} - 1 = (2.1 \pm 2.3) \times 10^{-5}$, from the measurement of the Shapiro delay (at radio wavelengths) with the Cassini spacecraft (Bertotti et al. 2003).

ApJL, 848:L13, 2017

More discoveries

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA

https://arxiv.org/abs/1304.0670

Masses in the Stellar Graveyard

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Four special detections

Binary neutron star merger (most massive NS pair known) <u>Astrophys. J. Lett. **892**, L3 (2020)</u>

Credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet.

Mass gap: heavy neutron star or black hole? <u>Astrophys. J. Lett. **896**, L44 (2020)</u> Asymmetric binary black hole merger Phys. Rev. D 102, 043015

Image credit: N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes project]

Intermediate mass black hole Phys. Rev. Lett. 125, 101102

Sources of gravitational waves: not just binary systems!

Coalescing Binary Systems

Neutron Stars, Black Holes

Credit: Chandra X-ray Observatory

'Bursts'

asymmetric core collapse supernovae cosmic strings ???

Continuous Sources

Spinning neutron stars crustal deformations, accretion

NASA/WMAP Science Team

Astrophysical or Cosmic GW background stochastic, incoherent background

Reducing the noise, increasing the rate of detections

https://arxiv.org/abs/2008.01301

The next few years

Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA

https://arxiv.org/abs/1304.0670 (last updated September 2019)

Third Generation Detectors (Ground based)

Different wavelengths need different instruments

The era of GW astronomy is here!

Image credit: LIGO/T. Pyle

www.ligo.org

