The ESSnuSB Workshop @ Hamburg University 2020 Oct 08

mamad.eshraqi@ess.eu

ESS LINAC FOR ESSNUSB

Mamad Eshraqi for Linac work-package

EUROPEAN SPALLATION SOURCE (ESS) SITE

2020 Oct 08

ESS Linac for ESSnuSB

ESSNUSB LAYOUT

LINAC LAYOUT

	Length (m)	W_out (MeV)	F (MHz)	$\beta_{Geometric}$	No. Sections	Т (К)
LEBT	2.38	0.075				~300
RFQ	4.6	3.62	352.21		1	~300
MEBT	3.83	3.62	352.21		l	~300
DTL	38.9	89.8	352.21		5	~300
LEDP + Spoke	55.9	216.3	352.21	0.50 _(Opt)	13	~2
Medium Beta	76.7	571.5	704.42	0.67	9	~2
High Beta	178.9	2000	704.42	0.86	21	~2
HB+	68.2	2500	704.42	0.86	8	~2
HEBT	59.6	2500			7	~300
DogLeg	66.3	2500			6	~300
A2T	44.6	2500				~300

M. Eshraqi

• Radio Frequency Quadrupole (RFQ) installed in the tunnel

Anne-Catherine Chauveau

 Medium Energy Beam Transport (MEBT)

- Installed in the tunnel

• Drift Tube Linac (DTL), assembled on site

2020 Oct 08

M. Eshraqi

2020 Oct 08

ESS Linac for ESSnuSB

Tunne RFDS, С

system Distrib Frequer Radio

LUND TO GARPENBERG VIA ZINKGRUVAN

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419 ESS Linac for ESSnuSB

AREAS OF CHANGE

PULSING

Scenario

(Sub)-pulse length (ms)

Beam current# (mA)

Frequency (Hz)

Time between pulses (ms)

Particles per batch

Batches per macro pulse

Particles per macro pulse (72 ms /14 Hz)

M. Eshraqi

A	В	С
0.65	~ .3*	0.77
60	~30	50
14	70	70
72 (0.75)	14	4
2.23 .1014	2.23 .1014	2.23 .1014
4	4	4
8.93 ·10 ¹⁴	8.93 ·10 ¹⁴	8.93 ·10 ¹⁴

ESS Linac for ESSnuSB

PULSING II

RAL AND SNS SOURCES

Parameter	RAL Penning IX ISIS	RAL Penning 2X FETS
Beam pulse length (ms)	0.25 ms	2 ms
Repetition frequency	50 Hz	50 Hz
Beam current	55 mA	100 mA
Duty cycle	1.25 %	10 %
Lifetime	5 weeks	2 weeks
Cs consumption	~0.7 g/week	~3.5 g/week
Emittance rms norm	0.25 mm mrad	0.3 mm mrad
LEBT	Sector magnet 90 degrees bend plus Cs cold trap Magnetic LEBT	Einzel Iens, carbon Cs trap Magnetic LEBT
RMS emittance after initial beam transport stage	0.7 mm mrad	0.3 mm mrad
Extraction voltage	18 (35) kV	18 (65) kV

SNS, Oak Ridge, RF surface enhanced volume source

Björn Gålnander, Håkan Danared

MODULATOR

- Two different power upgrades for the modulators have been studied:
 - Using the SML modulators of ESS and upgrading the capacitor chargers
 - Using the SML modulators of ESS and adding pulse transformers for the H- beam

MODULATOR

Scenario	Solution	Eta	Investment cost [M€]	Electricity cost per year [M€/y]	Increased system footprint [m ²]	Total system height [m]	H [–] pulse rise time [μs]	
A	SML upgr.	0.82	13.4	14.6	0	3.1	< 120	
D	SML upgr.	> 0.80	13.4	14.8	0	3.1	< 80	
в	SML + PT	> 0.80	26.3	14.8	< 2.5 × 1.5	2.4	60-120	
C	SML upgr.	> 0.7	13.4	16.7	0	3.1	< 170	
	SML + PT	> 0.72	26.6	16.5	< 2.5 × 1.5	2.4	50-120	
Baseline	SML	0.82	N/A	7.30	N/A	2.6	N/A	

Max Collins and Carlos Martins

ESS Linac for ESSnuSB

INTRA BEAM STRIPPING

IMPACT OF HIGHER ORDER MODES IN SC CAVITIES

LINAC TO RING (L2R) TRANSFER LINE

	Lattice cells																		
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32

LORENTZ FORCE STRIPPING IN THE L2R

- •Tunnel arc bending radius: 110 m
- Dipole bending radius: 73.5 m (corresponding to 0.15 T @ 2.5 GeV)
- •Accumulator ring depth: 7.864 m

INTRABEAM STRIPPING IN THE L2R

M. Eshraqi

Neven Blaskovic, Ben Folsom

SUMMARY

- Feasibility studies so far have not found any show-stoppers on the possibility of using the ESS linac for ESSnuSB
 - Developments in H- ion sources demonstrate a trend which would fit the needs of ESSnuSB -
 - Only a couple of structures in the NCL of ESS may need an upgrade -
 - RF sources are consumables and could be replaced with adequate ones for ESS+ESSnuSB
 - Existing modulators could be upgraded
 - Losses, which are the main concern in H- beams, are controlled in the linac -
 - L2R is being redesigned

