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CP violation in ESSnuSB 
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We will study νe and νe appearance in νμ and νμ beam, respectively 
 
The plan: 
1. Run with νμ and look at νe appearance, then 
2. Run with νμ and look at νe appearance 



ESSνSB ν energy distribution 
(without optimisation) 
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at 100 km from the 
target and per year 
(in absence of 
oscillations) 

neutrinos anti-neutrinos 

• almost pure νμ beam 
• small νe 

contamination which 
could be used to 
measure νe cross-
sections in a near 
detector 

(Nucl. Phys. B 885 (2014) 127)  



Purpose of the ESSnuSB 
detectors 
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Far detectors 
•Observe νe appearance in the νμ → νe oscillation 
channel  

 
Near detectors 
•Constrain the prompt neutrino flux 
•Measure neutrino interaction cross-sections (both 
inclusive and exclusive) 

(―) (―) (―) 



Neutrino 
baseline 
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Baseline: 
• Garpenberg mine, 540 km from 

the neutrino source, 
corresponding to 2nd oscillation 
maximum. 

 
Alternatives: 
• Zinkgruvan mine, 340 km from 

source 
• Garpenberg and Zinkgruvan, 

250 kt each 



Far detectors 
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Far detectors 

ESSnuSB workshop, Hamburg, 8 Oct 2020 B. Kliček, RBI. On behalf of ESSnuSB. 7 

Baseline – two identical modules. 
• It would be cheaper to have one larger 

module, but then we would have a problem 
with statics of the cave 
 

Each module is a standing cylinder: 
• diameter D = 78 m, height h = 78 m 

• D = h minimizes surface/volume ratio 
• 373k m3 total volume 
• 270k m3 fiducial volume (~10xSuperK) 
• Readout: 38k 20” PMTs 
• 30% optical coverage 

Possible positions at Zinkgruvan mine 



Expected interaction rates in 
Far Detectors  
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Neutrino mode Antineutrino mode 

Approx. expected number of interactions at 540 km in 540 kt of water for 2.16 x 1023 p.o.t.  
(effective year), assuming δCP = 0:  

Plots and numbers 
by L. Halić 

Channel Expected number 

νμ  → νe 200 

νμ  → νμ 3600 

νe  → νe 30 

Channel Expected number 

νμ  → νe 40 

νμ  → νμ 600 

νe  → νe 3 



Neutrino energy 
reconstruction 
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From:  Phys. Rev. D 96, 092006 
 

Kinematical neutrino energy 
reconstruction formula 

 
Given that you know: 
• magnitude of the outgoing charged 

lepton momentum 
• its angle w.r.t. incoming neutrino 
• that it is a quasielastic QES 

interaction 
• which nucleus neutrino interacted 

with (e.g. oxygen-16) 
you can approximately calculate 
neutrino energy. 
 
Intrinsic uncertainties come from 
nuclear effects, most notably fermi 
motion of nucleons in nuclei. 

 

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.092006


Energy resolution using true 
MC momenta 
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Conclusion: with a perfect detector using kinematical reconstruction formula we get 
energy resolution of about 110 MeV for neutrinos and 65 MeV for antineutrinos. 

𝜈𝜈𝑒𝑒    𝜈̅𝜈𝑒𝑒      
𝜈𝜈𝜇𝜇    𝜈̅𝜈𝜇𝜇 
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Charged lepton momentum reconstruction resolution in Far Detectors: 25-30 MeV 

Plots by 
O. Zormpa 
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Neutrino energy resolution for QES interactions: 
140 MeV for neutrinos and 100 MeV for antineutrinos 

Plots by 
O. Zormpa 



Far detector conclusions / 
strategy 
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• Main purpose: observe νe appearance in the νμ → νe oscillation channel 
• Energy reconstruction:  

• Using the kinematical reconstruction formula, there is an intristic 
resolution of 110 MeV for neutrinos and 65 MeV for antineutrinos. 

• Therefore, trying to improve the resolution of charged lepton 
momentum produces very diminishing returns – no reason to improve it 
further 

• Having calorimetry could significantly improve energy resolution 
• but, you can’t have calorimetry in pure WC detector 

• Things that we are optimizing (but carefully in order not to screw up non-
beam physics potential): 

• event tagging (νμ CC, νe CC, NC discrimination)  - work in progress 
• detector geometry w.r.t. the local rock conditions 
• PMT coverage 

 
 
 

(―) (―) (―) 



Near detectors 
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Near Detectors 
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Super-FGD like detector 
- 1 – 4 t target mass 
 
 

0.5 kt water Cherenkov detector 
Addition: NINJA-like 
water-emulsion 
detector 



Expected interaction rates 
inWC Near Detector 
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Neutrino mode Antineutrino mode 

Approximate expected interactions at 250 m in 500 t of water for 2.16 x 1023 p.o.t. (effective year):  

Plots and numbers 
by L. Halić 

Neutrino Expected number 

νμ 27.5 M 

νμ 66 k 

νe 150 k 

νe 300 

Neutrino Expected number 

νμ 265 k 

νμ 4.7 M  

νe 1.8 k 

νe 15 k 



Near WC detector 
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Dipole 



Near SFGD detector 
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• Baseline dimensions: 
• 140 x 140 x 50 cubes 
• each cube 1cm x 1cm x 1cm 

• Possible to do calorimetry 
• improving neutrino energy 

resolution 
 

• Could provide timing to emulstion 
detector 
 
 Plot by M. Bogomilov 



Near emulsion detector 
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Photo from T. Fukuda of NINJA collaboration 

Advantages of the emulsion detector 
• Can reconstruct all charged particle tracks  

with high precision 
• Can detect gammas via conversion 
• Good electron/muon/hadron 

discrimination 
 
Disadvantages of the emulsion detectors 
• No timing information 

• But can be restored by connecting 
tracks with FGD 

• Price per mass 
• No online event reconstruction 
• Labour intensive 

 
Usage in ESSnuSB 
• Study of neutrino interaction topology 
• Measurement of interaction cross-section 

 
 



Why measure cross-section? 

ESSnuSB workshop, Hamburg, 8 Oct 2020 B. Kliček, RBI. On behalf of ESSnuSB. 20 

Taken from PDG 2020: 
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) 

Two lonely 
dots in our 
energy region 

https://academic.oup.com/ptep/article/2020/8/083C01/5891211


Why measure cross-section? 
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• 4 different “tunes” of GENIE 4.0.6 produce significantly differen curves 
σCC (νe + 16O) 

σCC (νe + 16O) 

σCC (νμ + 16O) 

σCC (νμ + 16O) 



Cross-section measurement 
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Main problem: 
• Event rate (what we measure) is proportional to (flux) x (cross section) 
• So, we need one to measure the other, if using event rate as observable 

 
Strategies: 
• Use elastic scattering of neutrinos on electrons (known cross section) to constrain 

the flux 
• measured in the Near WC detector 

• Having constraint on the flux, we can measure interaction cross-sections in all Near 
Detectors: 

• WC, Super FGD, emulsion 
• Use current and future data from other experiments (e.g. T2K) 



Neutrino scattering on 
electrons 

ESSnuSB workshop, Hamburg, 8 Oct 2020 B. Kliček, RBI. On behalf of ESSnuSB. 23 

Basic idea: 
• Cross section for neutrino – electron scattering can be calculated to high precision (NLO seems to be 

enough for all practical purposes) 
• Knowing a cross-section, one can measure the flux at Near Detector site 

• More precisely, put tight constraints on the flux 
Main problem: 
• Neutrino cross-section scales with target mass 

• having electron as a target, the cross-section is much smaller than having nucleon as a target 
Event selection: 
• ν - e scattering has a very forward single electron in the final state 

 

True MC angular (θ) distribution True MC distribution of (θ2 Ee) 



Near detectors conclusions / 
strategy  
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• Main purposes: 
• Constrain the prompt neutrino flux 
• Measure neutrino interaction cross-sections (both inclusive and 

exclusive) 
 

• Main difficulty: 
• To disentangle the cross-section from flux 

 
• Strategy: 

• Constrain flux by measuring neutrino-electron scattering 
• Use the constrained flux to measure (inclusive and inclusive) cross-

sections for interactions of neutrinos with water 
 
 



The End 
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