



Funded by the Horizon 2020 Framework Programme of the European Union



# ESSnuSB near and far detector technology / strategy



Budimir Kliček Ruđer Bošković Institute Zagreb on behalf of ESSnuSB



8 Oct 2020

ESSnuSB workshop, Hamburg, 8 Oct 2020

B. Kliček, RBI. On behalf of ESSnuSB.

1





# **CP violation in ESSnuSB**

 $P_{\mu \to e} \neq P_{\overline{\mu} \to \overline{e}}$ 

We will study  $\nu_e$  and  $\overline{\nu}_e$  appearance in  $\nu_\mu$  and  $\overline{\nu}_\mu$  beam, respectively

The plan:

- 1. Run with  $v_{\mu}$  and look at  $v_{e}$  appearance, then
- 2. Run with  $\overline{v}_{\mu}$  and look at  $\overline{v}_{e}$  appearance

ESSnuSB workshop, Hamburg, 8 Oct 2020





### ESSvSB v energy distribution (without optimisation)



- almost pure  $v_{\mu}$  beam
- small v<sub>e</sub> contamination which could be used to measure v<sub>e</sub> crosssections in a near detector

|                  | positive                          |       | negative                          |      |
|------------------|-----------------------------------|-------|-----------------------------------|------|
|                  | $N_{ u}~(	imes 10^{10})/{ m m}^2$ | %     | $N_{ u}~(	imes 10^{10})/{ m m}^2$ | %    |
| $ u_{\mu}$       | 396                               | 97.9  | 11                                | 1.6  |
| $\bar{ u}_{\mu}$ | 6.6                               | 1.6   | 206                               | 94.5 |
| $\nu_e$          | 1.9                               | 0.5   | 0.04                              | 0.01 |
| $\bar{\nu}_e$    | 0.02                              | 0.005 | 1.1                               | 0.5  |

at 100 km from the target and per year (in absence of oscillations)

#### (Nucl. Phys. B 885 (2014) 127)

ESSnuSB workshop, Hamburg, 8 Oct 2020





# Purpose of the ESSnuSB detectors

### Far detectors

•Observe  ${}^{'}\!\bar{\nu}_{e}^{'}$  appearance in the  ${}^{'}\!\bar{\nu}_{\mu}^{'} \to {}^{'}\!\bar{\nu}_{e}^{'}$  oscillation channel

### **Near detectors**

- Constrain the prompt neutrino flux
- Measure neutrino interaction cross-sections (both inclusive and exclusive)



# Neutrino baseline



• Garpenberg mine, 540 km from the neutrino source, corresponding to 2nd oscillation maximum.

### **Alternatives:**

- Zinkgruvan mine, 340 km from source
- Garpenberg and Zinkgruvan, 250 kt each





# **Far detectors**

ESSnuSB workshop, Hamburg, 8 Oct 2020

B. Kliček, RBI. On behalf of ESSnuSB.

6





# **Far detectors**



### **Baseline – two identical modules.**

• It would be cheaper to have one larger module, but then we would have a problem with statics of the cave

### Each module is a standing cylinder:

- diameter D = 78 m, height h = 78 m
  - D = h minimizes surface/volume ratio
- 373k m<sup>3</sup> total volume
- 270k m<sup>3</sup> fiducial volume (~10xSuperK)
- Readout: 38k 20" PMTs
- 30% optical coverage

ESSnuSB workshop, Hamburg, 8 Oct 2020

### Possible positions at Zinkgruvan mine



# **Expected interaction rates in Far Detectors**

Plots and numbers by L. Halić

#### Neutrino mode

Antineutrino mode



Approx. expected number of interactions at 540 km in 540 kt of water for 2.16 x 10<sup>23</sup> p.o.t. (effective year), assuming  $\delta_{CP} = 0$ :

| Channel                           | Expected number |
|-----------------------------------|-----------------|
| $\nu_{\mu} \rightarrow \nu_{e}$   | 200             |
| $\nu_{\mu} \rightarrow \nu_{\mu}$ | 3600            |
| $\nu_e \rightarrow \nu_e$         | 30              |

ESSnuSB workshop, Hamburg, 8 Oct 2020

| Channel                                                   | Expected number |
|-----------------------------------------------------------|-----------------|
| $\overline{\nu}_{\!\mu} \to \! \overline{\nu}_{\!e}$      | 40              |
| $\overline{\nu}_{\!\mu} \to \overline{\nu}_{\!\mu}$       | 600             |
| $\overline{\nu_{\!_e}} \rightarrow \overline{\nu_{\!_e}}$ | 3               |





# Neutrino energy reconstruction

# Kinematical neutrino energy reconstruction formula

$$E_{\nu}^{rec} = \frac{m_f^2 - (m_i')^2 - m_l^2 + 2m_i'E_l}{2(m_i' - E_l + p_l\cos\theta_l)}$$
(4)

where  $E_{\nu}^{rec}$  is the reconstructed neutrino energy,  $m_i$  and  $m_f$  are the initial and final nucleon masses respectively, and  $m'_i = m_i - E_{\rm b}$ , where  $E_{\rm b} = 27 \,\text{MeV}$  is the binding energy of a nucleon inside <sup>16</sup>O nuclei.  $E_l$ ,  $p_l$  and  $\theta_l$  are the reconstructed lepton energy, momentum, and angle with respect to the beam, respectively. The selec-

#### From: Phys. Rev. D 96, 092006

### Given that you know:

- magnitude of the outgoing charged lepton momentum
- its angle w.r.t. incoming neutrino
- that it is a quasielastic QES interaction
- which nucleus neutrino interacted with (e.g. oxygen-16)
   you can **approximately** calculate neutrino energy.

Intrinsic uncertainties come from nuclear effects, most notably **fermi motion** of nucleons in nuclei.







**Conclusion:** with a perfect detector using kinematical reconstruction formula we get energy resolution of about **110 MeV for neutrinos** and **65 MeV for antineutrinos**.

ESSnuSB workshop, Hamburg, 8 Oct 2020

### S Difference between reconstructed and true lepton momentum





ESSnuSB workshop, Hamburg, 8 Oct 2020

### Difference between reconstructed and true v energy





ESSnuSB workshop, Hamburg, 8 Oct 2020

CSI





# Far detector conclusions / strategy

- Main purpose: observe  $\stackrel{(i)}{\nu}_{e}$  appearance in the  $\stackrel{(i)}{\nu}_{\mu} \rightarrow \stackrel{(i)}{\nu}_{e}$  oscillation channel
- Energy reconstruction:
  - Using the kinematical reconstruction formula, there is an intristic resolution of **110 MeV for neutrinos** and **65 MeV for antineutrinos**.
  - Therefore, trying to improve the resolution of charged lepton momentum produces very **diminishing returns** – no reason to improve it further
  - Having calorimetry could significantly improve energy resolution
    - but, you can't have calorimetry in pure WC detector
- Things that we are optimizing (but carefully in order not to screw up nonbeam physics potential):
  - event tagging ( $v_{\mu}$  CC,  $v_{e}$  CC, NC discrimination) work in progress
  - detector geometry w.r.t. the local rock conditions
  - PMT coverage





## **Near detectors**

ESSnuSB workshop, Hamburg, 8 Oct 2020

B. Kliček, RBI. On behalf of ESSnuSB.

14





### **Near Detectors**



ESSnuSB workshop, Hamburg, 8 Oct 2020







Neutrino mode

Antineutrino mode



Approximate expected interactions at 250 m in 500 t of water for 2.16 x 10<sup>23</sup> p.o.t. (effective year):

| Neutrino               | Expected number |
|------------------------|-----------------|
| $\nu_{\mu}$            | 27.5 M          |
| $\overline{\nu}_{\mu}$ | 66 k            |
| ν <sub>e</sub>         | 150 k           |
| $\overline{v_{e}}$     | 300             |

| Neutrino               | Expected number |
|------------------------|-----------------|
| $\nu_{\mu}$            | 265 k           |
| $\overline{\nu}_{\mu}$ | 4.7 M           |
| v <sub>e</sub>         | 1.8 k           |
| $\overline{\nu}_{e}$   | 15 k            |

ESSnuSB workshop, Hamburg, 8 Oct 2020







### ND design discussion







# **Near SFGD detector**



#### • Baseline dimensions:

- 140 x 140 x 50 cubes
- each cube 1cm x 1cm x 1cm
- Possible to do calorimetry
  - improving neutrino energy resolution

# • Could provide timing to emulstion detector







# **Near emulsion detector**

### Advantages of the emulsion detector

- Can reconstruct all charged particle tracks with high precision
- Can detect gammas via conversion
- Good electron/muon/hadron discrimination

### Disadvantages of the emulsion detectors

- No timing information
  - But can be restored by connecting tracks with FGD
- Price per mass
- No online event reconstruction
- Labour intensive



### Water target emulsion detector

### Photo from T. Fukuda of NINJA collaboration

### Usage in ESSnuSB

- Study of neutrino interaction topology
- Measurement of interaction cross-section







Two lonely dots in our energy region

Figure 51.1: Measurements of per nucleon  $\nu_{\mu}$  and  $\overline{\nu}_{\mu}$  CC inclusive scattering cross sections divided by neutrino energy as a function of neutrino energy. Note the transition between logarithmic and linear scales occurring at 100 GeV. Neutrino cross sections are typically twice as large as their corresponding antineutrino counterparts, although this difference can be larger at lower energies. NC cross sections (not shown) are generally smaller compared to the CC case.

#### Taken from PDG 2020: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

ESSnuSB workshop, Hamburg, 8 Oct 2020





### Why measure cross-section?

• 4 different "tunes" of GENIE 4.0.6 produce significantly differen curves







# **Cross-section measurement**

### Main problem:

- Event rate (what we measure) is proportional to (flux) x (cross section)
- So, we need one to measure the other, if using event rate as observable

### Strategies:

- Use elastic scattering of neutrinos on electrons (known cross section) to constrain the flux
  - measured in the Near WC detector
- Having constraint on the flux, we can measure interaction cross-sections in all Near Detectors:
  - WC, Super FGD, emulsion
- Use current **and future** data from other experiments (e.g. T2K)





# Neutrino scattering on electrons

#### Basic idea:

- Cross section for neutrino electron scattering can be calculated to high precision (NLO seems to be enough for all practical purposes)
- Knowing a cross-section, one can measure the flux at Near Detector site
  - More precisely, put tight constraints on the flux

#### Main problem:

- Neutrino cross-section scales with target mass
  - having electron as a target, the cross-section is much smaller than having nucleon as a target

#### **Event selection:**

• v - e scattering has a very forward single electron in the final state







# Near detectors conclusions strategy

- Main purposes:
  - Constrain the prompt neutrino flux
  - Measure neutrino interaction cross-sections (both inclusive and exclusive)
- Main difficulty:
  - To disentangle the cross-section from flux
- Strategy:
  - Constrain flux by measuring neutrino-electron scattering
  - Use the constrained flux to measure (inclusive and inclusive) crosssections for interactions of neutrinos with water





# **The End**

ESSnuSB workshop, Hamburg, 8 Oct 2020