THEIA: An Advanced Hybrid Neutrino Detector

+++ ESSvSB Workshop +++ UHH, Oct 9, 2020 +++ Michael Wurm +++

What is THEIA?

THEIA

Low-energy neutrino detectors

4ttenuation length (m) 52 00 52

75

50

25

0- 10^{2}

Water Cherenkov Detectors:

Nater (SK, SNO)

- large volume (25kt \rightarrow 250kt)
- directional reconstruction
- few-MeV threshold

 10^{4}

e/μ ID based on ring fuzziness

cheap

Photon yield (MeV)

103

Low-energy neutrino detectors

THEIA

Cherenkov photons in scintillator

- → Cherenkov light is particularly useful for reconstruction of direction and (multiple) tracks
- → Cherenkov photons are produced in liquid scintillators (~5%)
- → the majority is scattered or absorbed before reaching PMTs

To make use of it:

- \rightarrow reduce scattering/absorption
- → separation of Cherenkov and scintillation photons

5

Light propagation in organic scintillators

How to improve the (relative) Cherenkov photoelectron yield?

\rightarrow reduce fluor concentration

- impacts scintillation yield
- slows down scintillation
 (helps separation, see later)

→ reduce Rayleigh scattering

new transparent solvent,e.g. LAB (~20m)

and/or

dilution of solvent:
 Water-based scintillators
 Oil-diluted LS (LSND ...)

Water-based Liquid Scintillator

ightarrow properties of target medium can be adjusted to physics goal

G

Water-based Liquid Scintillator?

Challenges

- water does not scintillate
- organic fluorophores do not dissolve in water

How to overcome this?

- start from usual organic scintillator, i.e. solvent (e.g. LAB) + small concentration of fluorophore (e.g. PPO, several gram/liter)
- add a surfactant (tensid) to create the interface between organic and water phase
- dissolve nanometer-scale droplets (mycels) of organic LS in the water phase

Properties

- very transparent (water)
- some Rayleigh scattering of mycels (size!)
- scintillation! (linear with organic fraction)
- fast timing (LAB → PPO transfer times)

→ how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons"
vs. delayed "scintons"
→ ≤ 1 nanosec resolution

UV/blue scintillation vs. blue/green Cherenkov → wavelength-sensitivity

increased PMT hit density under Cherenkov angle → sufficient granularity

Scintons

chertons

\rightarrow how to resolve the Cherenkov/scintillation signals?

Timing

#

e.g.

"instantaneous chertons" vs. delayed "scintons" $\rightarrow \leq 1$ nanosec resolution

Spectrum

UV/blue scintillation vs. blue/green Cherenkov \rightarrow wavelength-sensitivity

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

scint

Scintons

chertons

180° angle

→ how to resolve the Cherenkov/scintillation signals?

Timing

"instantaneous chertons"
vs. delayed "scintons"
→ ≤ 1 nanosec resolution

Large Area Picosecond Photon Detectors

- Area: 20-by-20 cm²
- Amplification of p.e. by two MCP layers
- Flat geometry: ultrafast timing ~65ps
- Strip readout: spatial resolution ~1cm
- Commercial production by Incom, Ltd.

Scintons

thertons

LТ

Dichroic filters

-0.018

600 700

E.....

800 900 1000 1100 1200 1300

sample pulse

1400 1500 160 Sample (0.1 ns)

Chertons and Scintons with CHESS

____0

[arXiv:2006.00173]

Setup at UC Berkeley (Gabriel Orebi Gann)

Results for timing distributions in different rings:

LAB + 2g/l PPO

WbLS (5% organic)

→ ring and timing pattern clearly visible!

ightarrow WbLS is found to be faster than pure LAB LS

WbLS	1%	5%	10%
τ_1 [ns]	2.25 ± 0.15	2.35 ± 0.11	2.70 ± 0.16
τ_2 [ns]	15.1 ± 7.5	23.2 ± 3.3	27.1 ± 4.2
R_1	0.96 ± 0.01	0.94 ± 0.01	0.94 ± 0.01

information

THEIA100

Detector Specifications

- Detector mass: ca. 100 kt
- Dimensions: 50-by-50 m? (WbLS transparency)
- Photosensors: mix of conventional PMTs (light collection) and LAPPDs (timing)
- Location: deep lab with neutrino beam (Homestake, Pyhäsalmi, Swedish sites?)

THEIA25 as Module 4 of DUNE

Detector specifications

- Total mass:
 Fiducial mass:
- Photosensors:
 22,500x 10" PMTs

700x 8" LAPPDs

25% coverage w/ high QE ~3% coverage

 Background levels: Radiopurity (H₂O): Rock shielding:

~10⁻¹⁵ g/g in ²³⁸U, ²³²Th, ⁴⁰K 4300 m.w.e. → equals the current photon collection of SK! → upgrade for later phases (solar, $0\nu\beta\beta$)

 \rightarrow muon flux at SURF only ~10% of LNGS

THEIA25 : Staged Approach

What will a **large WbLS detector** add to the existing LBNF/DUNE program?

Added value for LBL (δ_{CP}) program

Additional statistics

Michael Wurm (Mainz)

- \sim 1.7:1 in mass for WbLS : LAr
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- hadronic recoils/neutron tagging

 → reduces systematics of energy reco
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference

Intensity Frontier : SHiP and THEIA

JGU

What will a **large WbLS detector** add to the existing LBNF/DUNE program?

Added value for LBL (δ_{CP}) program

Additional statistics

Michael Wurm (Mainz)

- \sim 1.7:1 in mass for WbLS : LAr
- Complementary systematics e.g. cross-sections (simpler nuclei)
- hadronic recoils/neutron tagging
 → reduces systematics of energy reco
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference

What will a **large WbLS detector** add to the existing LBNF/DUNE program?

Added value for LBL (δ_{CP}) program

Additional statistics

Michael Wurm (Mainz)

- \sim 1.7:1 in mass for WbLS : LAr
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- hadronic recoils/neutron tagging
 → reduces systematics of energy reco
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference

4th existing cavern for 30-kt WbLS detector

What will a **large WbLS detector** add to the existing LBNF/DUNE program?

Added value for LBL (δ_{CP}) program

Additional statistics

Michael Wurm (Mainz)

- \sim 1.7:1 in mass for WbLS : LAr
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- hadronic recoils/neutron tagging
 → reduces systematics of energy reco
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference

4th existing cavern for 30-kt WbLS detector

What will a **large WbLS detector** add to the existing LBNF/DUNE program?

Added value for LBL (δ_{CP}) program

Additional statistics

Michael Wurm (Mainz)

- \sim 1.7:1 in mass for WbLS : LAr
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- hadronic recoils/neutron tagging
 → reduces systematics of energy reco
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference

for 30-kt WbLS detector

What will a **large WbLS detector** add to the existing LBNF/DUNE program?

Added value for LBL (δ_{CP}) program

Additional statistics

200

Michael Wurm (Mainz)

- \sim 1.7:1 in mass for WbLS : LAr
- Complementary systematics
 e.g. cross-sections (simpler nuclei)
- hadronic recoils/neutron tagging
 → reduces systematics of energy reco
 → neutrino/antineutrino discrimination
- Improved energy resolution for low energies (2nd oscillation maximum)
- Fast timing: ν energy measurement using initial π/K time-of-flight difference

rich low-energy neutrino program

ANNIE at Fermilab

JGU

ANNIE Phase II

- 26t H₂O+Gd Cherenkov detector, UK+US+DE
- ANNIE measures v cross sections and neutron multiplicity in Booster Neutrino Beam
- First application of LAPPDs in a neutrino beam experiment → study inpact on reco
- Data can be combined/compared to SBND
 → A/O cross-sections from same v beam

ANNIE at Fermilab

ANNIE Phase II

- 26t H₂O+Gd Cherenkov detector, UK+US+DE
- ANNIE measures v cross sections and neutron multiplicity in Booster Neutrino Beam
- First application of LAPPDs in a neutrino beam experiment → study inpact on reco
- Data can be combined/compared to SBND
 → A/O cross-sections from same v beam

SANDI

planned for summer next year:

- insertion of acrylic vessel with 0.5t of
 - **Gd-loaded WbLS** into the target volume
- study of scintillation signal from hadronic recoils → energy reco

ANNIE Phase III

two years from now:

- full target volume with WbLS (incl. liquid handling system)
- upgrade to full LAPPD setup (20x)
- improved cross-section measurement
- NC backgrounds for DSNB/proton decay measurements

Michael Wurm (Mainz)

Astrophysical neutrinos at low energies

Solar Neutrinos from H fusion in solar interior

Supernova Neutrinos from cooling of proto neutron star within the Milky Way

Geoneutrinos Natural radioactivity of Earth crust/mantle **Diffuse Supernova Neutrinos** from core-collapse Supernovae throughout the Universe

Michael Wurm (Mainz)

Astrophysical neutrinos at low energies

Solar Neutrinos

- Oscillations: spectral upturn solar $\Delta m_{21}^2 \neq reactor \Delta m_{21}^2$ \rightarrow low-energy ⁸B neutrinos
- precision measurement of CNO neutrinos and solar metallicity

Galactic Supernovae

- prominent antineutrino signal
- NC information on all flavors
- high-accuracy SN pointing
- Iong range (3v frm Andromeda)
- sensitive to pre-SN neutrinos

Diffuse SNv background (DSNB) excellent background rejection \rightarrow discovery of the DSNB signal

- average SN neutrino spectrum
- rate of failed/dark Supernovae

Geoneutrinos

- detetermine radiogenic contribution to heat flow
- measure U/Th contributions to crust and mantle
- determine ratio of U and Th

WbLS: Impact on MeV neutrino detection JG

[arXiv:2007.14999]

Water Cherenkov

- High transparency
 → enhanced light collection
- Directionality from cone reco
- Particle ID from ring counting
- Enhanced metal loading

Combined: Particle ID based on **Cherenkov/scintillation (C/S) ratio** (p, α below **Č** threshold)

Organic scintillator mycels

- Low (sub-Cherenkov) threshold
- Increased light yield
- Enhanced vertex reconstruction
- Particle ID by pulse shape
- Enhanced cleanliness

Diffuse Supernova Neutrino Background G

[arXiv:2007.14705]

DSNB detection:

- Low-flux $\mathcal{O}(10^2 \text{ cm}^{-2}\text{s}^{-1}) \bar{\nu}_e$ signal \rightarrow detectable by IBD: ~2 ev. per 10 kt·yrs
- Requires efficient BG discrimination, especially to atmospheric v NC interactions
- In THEIA:
 - ring counting: Ο
 - **Cherenkov/scintillation ratio** Ο
 - delayed decay tags Ο
- \rightarrow signal efficiency: 81%
- \rightarrow residual background: 1.3%

very clean measurement cf. JUNO & SK-Gd

THEIA100: 17 IBDs over 9 BG per year \rightarrow 5 σ discovery after 1-2 years

Michael Wurm (Mainz)

Neutrinoless double-beta decay

JGU

Insertion of a sub-volume holding 1.8kt of organic scintillator (LAB+PPO)

loading: -- **3% enriched Xe** (89.5%) -- **5% natural Te** (~90t)

enhanced 1200 pe/MeV (cf. JUNO) photo-cov. → 3% energy resolution

Plot by Yu. G. Kolomensky using methodology from Agostini, Benato, Detwiler: Phys Rev D96 053001

Further reading: THEIA Whitepaper

EPJC 80, 416 (2020), arXiv:1911.03501

Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8 THE EURO PHYSICAL

Regular Article - Experimental Physics

THEIA: an advanced optical neutrino detector

M. Askins^{1,2}, Z. Bagdasarian³, N. Barros^{4,5,6}, E. W. Beier⁴, E. Blucher⁷, R. Bonventre², E. Bourret², E. J. Callaghan^{1,2}, J. Caravaca^{1,2}, M. Diwan⁸, S. T. Dye⁹, J. Eisch¹⁰, A. Elagin⁷, T. Enqvist¹¹, V. Fischer¹², K. Frankiewicz¹³, C. Grant¹³, D. Guffanti¹⁴, C. Hagner¹⁵, A. Hallin¹⁶, C. M. Jackson¹⁷, R. Jiang⁷, T. Kaptanoglu⁴, J. R. Klein⁴, Yu. G. Kolomensky^{1,2}, C. Kraus¹⁸, F. Krennrich¹⁰, T. Kutter¹⁹, T. Lachenmaier²⁰, B. Land^{1,2,4}, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova³, M. Malek²¹, S. Manecki^{18,22,23}, J. Maneira^{5,6}, J. Maricic⁹, J. Martyn¹⁴, A. Mastbaum²⁴, C. Mauger⁴, F. Moretti², J. Napolitano²⁵, B. Naranjo²⁶, M. Nieslony¹⁴, L. Oberauer²⁷, G. D. Orebi Gann^{1,2,a}, J. Ouellet²⁸, T. Pershing¹², S. T. Petcov^{29,30}, L. Pickard¹², R. Rosero⁸, M. C. Sanchez¹⁰, J. Sawatzki²⁷, S. H. Seo³¹, M. Smiley^{1,2}, M. Smy³², A. Stahl³³, H. Steiger²⁷, M. R. Stock²⁷, H. Sunej⁸, R. Svoboda¹², E. Tiras¹⁰, W. H. Trzaska¹¹, M. Tzanov¹⁹, M. Vagins³², C. Vilela³⁴, Z. Wang³⁵, J. Wang¹², M. Wetstein¹⁰, M. J. Wilking³⁴, L. Winslow²⁸, P. Wittich³⁶, B. Wonsak¹⁵, E. Worcester^{8,34}, M. Wurm¹⁴, G. Yang³⁴, M. Yeh⁸, E. D. Zimmerman³⁷, S. Zsoldos^{1,2}, K. Zuber³⁸

¹ Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA

- ² Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8153, USA
- ³ Forschungszentrum Jülich, Institute for Nuclear Physics, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- ⁴ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396, USA
- ⁵ Faculdade de Ciências (FCUL), Departamento de Física, Campo Grande, Edifício C8, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- ⁶ Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal
- ⁷ Department of Physics, The Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
- ⁸ Brookhaven National Laboratory, Upton, NY 11973, USA
- ⁹ University of Hawai'i at Manoa, Honolulu, HI 96822, USA
- ¹⁰ Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- ¹¹ Department of Physics, University of Jyväskylä, Jyvaskyla, Finland
- ¹² University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
- ¹³ Department of Physics, Boston University, Boston, MA 02215, USA
- ¹⁴ Institute of Physics and Excellence Cluster PRISMA, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- ¹⁵ Institut f
 ür Experimentalphysik, Universit
 ät Hamburg, 22761 Hamburg, Germany
- ¹⁶ Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, AB T6G 2E1, Canada
- 17 Pacific Northwest National Laboratory, Richland, WA 99352, USA
- ¹⁸ Department of Physics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
- ¹⁹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
- ²⁰ Kepler Center for Astro and Particle Physics, Universität Tübingen, 72076 Tübingen, Germany
- ²¹ Physics and Astronomy, Western Bank, University of Sheffield, Sheffield S10 2TN, UK
- ²² Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canada
- ²³ SNOLAB, Creighton Mine 9, 1039 Regional Road 24, Sudbury, ON P3Y 1N2, Canada

²⁴ Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019,

THEIA proto-collaboration: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US)

More information on:

- Detector technology
- Low energy neutrinos, e.g. solar, SN neutrinos
- Nucleon decay

Conclusions

THEIA

Backup Slides

DUNE Near Detector vs. THEIA?

DUNE Near Detector Complex

DUNE ND uses **agron** as target isotope → does this configuration suit THEIA?

Up to a point, yes!

- Predict neutrino spectrum at Far Site
- Measure the neutrino energy
- Measure cross-sections on oxygen (?)
- Measure neutrino flux
- Measure under different angles (PRISM concept)
- Monitor neutrino beam

4th **existing cavern** for 30-kt WbLS detector

Supernova Neutrinos in THEIA25

Galactic Supernovae (10kpc):

Expected events: ~5,000, mostly $\overline{\nu}_e$'s from IBD

- complementary to v_e signal in LAr
- Same location as DUNE Far Detectors:
 compare Earth matter effects in $\nu/\bar{\nu}$ channels
- Provide fast trigger for Lar TPCs, especially for far-off Supernovae (LMC: ~200 events in THEIA)

Detection channels can be separated due to **neutron & delayed decay tags**

- some all-flavor (ν_e+ν_μ+ν_τ) information from NC reactions on oxygen
- Enhanced SN pointing: ~2° based on ES with IBD background subtraction

THEIA

Solar neutrinos

Objectives:

- Precise measurement of CNO neutrino flux
- Spectral upturn of low-energy ⁸B neutrinos

> stellar physics, solar metallicity
> matter effects, BSM physics?

- ightarrow require efficient BG discrimination and sufficient light yield in 1-3 MeV range
- THEIA25: 2D directional & spectral fit
 CNO flux at 10% level after 5 yrs

pre-Supernova neutrinos

JG U

R&D in Germany: WbLS

WbLS Development at TUM

- → systematic study of WbLS composition and properties
- → new WbLS components: surfactants (Triton-X vs. LAS), solvents (benzene, dioxane)
- → in Mainz: oil-diluted organic LS (heptane, dodecane, hexadecane)

WbLS Light Yield in Mainz

- → forward-scattered electrons produce Chertons and scintons
- → rear PMT sees pure scinton signal, front PMTs (tts 300ps) separate C/S signals

WbLS Cherton/Scinton Test Cell in Mainz

- → C/S discrimination and reco with sub-ns photosensors
- → light propagation in WbLS over 10-20 cm
- Cylindrical tank: 10-15l
- Air gap for ring formation
- Changeable photosensors: LAPPDs, SiPMs ...
- fast (<1ns) PMT rear array for scinton detection

Michael Wurm (Mainz)

R&D in Germany: Photosensors

Idea: SiPM array with active light guides

- SiPM arrays for sub-nanosec timing
- increased granularity compared to PMTs
- equip SiPMs with cone-shaped scintillators to enhance light collection
 - \rightarrow reduce costs
 - \rightarrow reduce dark noise

Currently: Production of test array in TÜ

- 2x2 array with SiPM mounted on small piggyback boards
- Active light guides:
 3 plastic scintillators from Mainz
 1 reference channel without guide
- Design of large mother board on-going:
 O Preamplifiers and other electronics
 O Adapters for piggyback boards

Planned: Design of readout electronics for 64-channel array with FZ Jülich/ZEA-2

R&D in Germany: Reconstruction

Topological Reconstruction

Basic idea: Propagate photons (hits) backward in time to find regions of maximum overlap of emission probability

 \rightarrow iterative process using probability mask to sharpen image

First application to WbLS

- ANNIE-sized detector filled with WbLS
- inclusion of Chertons in emission model

← result for 0.5GeV muon including LAPPD information

Contribution to ANNIE Upgrade

- \rightarrow Acrylic Vessel for WbLS deployment
- \rightarrow contribute to WbLS handling: online purification?
- \rightarrow SiPM array : first test detector for ANNIE Phase 3?
- \rightarrow test of novel reco algorithms

σ

Wonsa

.0880

0.10

0.08

0.06

0.04

0.02

DSNB Ring Counting

DSNB C/S ratio background rejection

JG	U
----	---

Reaction channel	Branching Ratio	
(1) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + n + {}^{15}\text{O}$	45.9%	← taggable
(2) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + n + p + {}^{14}\text{N}$	19.7%	
(3) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + \text{n} + 2\text{p} + {}^{13}\text{C}$	14.7%	
(4) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + n + p + d + {}^{12}\text{C}$	9.1%	
(5) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + n + p + d + \alpha + {}^{8}\text{Be}$	2.0%	
(6) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + \text{n} + 3 \text{p} + {}^{12}\text{B}$	1.8%	← taggable
(7) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + n + \alpha + {}^{3}\text{He}^{+ 8}\text{Be}$	1.6%	
(8) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + n + p + \alpha + {}^{10}\text{B}$	1.4%	
(9) $\nu_x + {}^{16}\text{O} \longrightarrow \nu_x + \text{n} + 2\text{p} + \alpha + {}^{9}\text{Be}$	1.2%	
other reaction channels	2.6%	

		100 kt·yrs exposure		
Spectral component	basic cuts	single-ring	C/S cut	delayed decays
DSNB signal	21.6	21.6	17.6 (17.3)	17.4 (17.1)
Atmospheric CC	2.0	2.0	1.7(1.6)	1.7(1.6)
Atmospheric NC	682	394	13.6(14.6)	7.4(7.9)
fast neutrons	0.8	0.8	_	_
Signal efficiency	1	1	0.82(0.81)	0.81(0.80)
Background residual	1	0.58	0.022(0.024)	0.013(0.014)
Signal-to-background	0.03	0.05	1.2(1.1)	1.9 (1.8)
Signal significance	0.8	1.1	3.1 (3.0)	3.4 (3.3)

DSNB Sensitivity : Other projects

FIG. 10. Projections for the signal rates (left panel) and signal significance (right panel) of the relevant DSNB observatories over the next two decades. Optimistic scenarios correspond to dashed lines. The optimistic sum includes Theia100, and a second tank for Gd-loaded HyperK. DUNE is not added to the overall sum, due to different neutrino channel. Assuming a start of data taking in 2035, Theia100 soon dominates the scene regarding both collected signal statistics and significance of the detection. Theia25 makes a slower start but provides an increasingly relevant contribution over ten years of data taking. See the text for a more detailed discussion.

Solar : angular resolution & WbLS fraction JG

Solar neutrinos – ⁷Li loading

- Water Čerenkov (SK + SNO): ν (⁸B)
- LS (Borexino): Low Energy ν (pp, pep, ⁷Be)
- ► WbLS: interesting energy region

CNO neutrinos

Very relevant for solar and stellar physics

⁸B neutrino upturn
 Exotic oscillation behaviour

Detected kinetic energy of recoil electron / MeV

Solar ν CC interaction Possible loading with ⁷Li $\nu_e + {}^{7}\text{Li} \rightarrow {}^{7}\text{Be} + e^{-}$

(Q = 862 keV)

Less statistics than ES signal, but almost direct measurement of ν_e energy

- Improved spectral separation
- Separation of CNO components

$0\nu\beta\beta$ study for THEIA50

Source	Target level	Expected events/ y	Events	$s/ROI \cdot y$
			570 16	e 370 Ae
Balloon ¹⁰ C		500	2.5	2.5
${}^{8}B$ neutrinos (normalization from [107])		2950	13.8	13.8
130 I (Te target)		$155 (30 \text{ from } {}^8\text{B})$	8.3	-
136 Cs (^{enr} Xe target)		$478 (68 \text{ from } {}^8\text{B})$	-	0.06
$2\nu\beta\beta$ (Te target, T _{1/2} from [108])		1.2×10^{8}	8.0	-
$2\nu\beta\beta$ (errXe target, T _{1/2} from [109, 110])		7.1×10^{7}	-	3.8
Liquid scintillator	$^{214}{ m Bi:}~10^{-17}~{ m g}_U/{ m g}$	7300	0.4	0.4
	208 Tl: $10^{-17} \mathrm{~g}_{Th}/\mathrm{g}$	870	-	-
Nylon Vessel 111, 112	²¹⁴ Bi: $< 1.1 \times 10^{-12} \text{ g}_U/\text{g}$	$1.2{ imes}10^5$	3.0	3.4
· · ·	²⁰⁸ Tl: $< 1.6 \times 10^{-12} \text{ g}_{Th}/\text{g}$	2.1×10^4	0.03	0.02

FIG. 15: The detected energy spectrum of the predicted rate of antineutrinos from nuclear power reactors and Earth, assuming a 50 kT water target.

Proton decay sensitivity

FIG. 19: Sensitivity for $p \to \bar{\nu}K^+$ is highest for THEIA, closely followed by the Hyper-K detector, whereas JUNO and DUNE will perform similarly. The inclusion of THEIA in the fourth Dune cavity would provide an enhancement to this mode over the full 40-kt Dune.