Condensed Matter Physics in Big Discrete Time Crystals in a BEC

Sunday, 10 September 2023 21:40 (20 minutes)

Discrete time crystals created in a Bose-Einstein condensate of ultracold atoms bouncing on an oscillating mirror [1] can exhibit dramatic breaking of time-translation symmetry [2, 3], allowing the creation of discrete time crystals having tens of temporal lattice sites and suitable for hosting a broad range of condensed matter phenomena in the time dimension [4].

We will discuss temporal condensed matter phenomena including Anderson and many-body localisation due to temporal disorder, topological time crystals and quasi-crystalline structures in time. We will also discuss the construction of two-dimensional time lattices involving a BEC bouncing between two oscillating mirrors oriented at 90-degrees and at 45-degrees. The latter configuration can support a versatile Möbius strip geometry which can host a variety of two-dimensional time lattices including a honeycomb time lattice and a Lieb square time lattice [5].

References:

Primary author: Prof. HANNAFORD, Peter (Swinburne University of Technology)
Co-authors: Mr ZAHEER, Ali (Swinburne University of Technology); Prof. Sidorov, Andrei (Swinburne University of Technology); Ms Singh, Arpana (Swinburne University of Technology); Mrs Gunawardana, Chamali (Swinburne University of Technology); Dr Giergiel, Krzysztof (Swinburne University of Technology); Prof. Sacha, Krzysztof (Jagiellonian University); Prof. Tojo, Satoshi (Chuo University)
Presenter: Prof. HANNAFORD, Peter (Swinburne University of Technology)
Session Classification: Poster Session I
Track Classification: Hybrid Quantum Systems