Exploring low-temperature phases of spin-imbalanced 2D superfluids in box potentials

Monday, 11 September 2023 22:40 (20 minutes)

In recent years, our group has created homogeneous ultracold Fermi gases in two-dimensional and three-dimensional box potentials. Using Bragg spectroscopy we have determined the dynamic structure factor of spin-balanced superfluids in the BEC-BCS crossover and extracted both the superfluid gap and the critical velocity [1-2]. By directly comparing 2D and 3D superfluids we could directly observe the influence of dimensionality on the stability of these strongly interacting fermionic superfluids [3].

On this poster, I will report on our ongoing effort to study spin-imbalanced homogeneous 2D Fermi gases. Here, many questions concerning the nature of the superfluid phase arise, e.g. whether there is a phase separation into a balanced superfluid and a (partially) polarized normal phase or whether a partially polarized superfluid forms. I will discuss how we prepare the coldest spin-imbalanced Fermi gases yet and present first results of the observed density profiles and Bragg spectra.


Primary author: MORITZ, Henning (University of Hamburg)
Co-authors: Dr CABRERA, Cesar (University of Hamburg); Mr BISS, Hauke (University of Hamburg); Mr HENKE, René
Presenter: MORITZ, Henning (University of Hamburg)
Session Classification: Poster Session II
Track Classification: Quantum Gases in Low Dimensions