9–15 Sept 2023
Hotel Eden Roc
Europe/Berlin timezone

Quantum Hall physics in a quantum Foucault pendulum

13 Sept 2023, 21:00
2h
Hotel Eden Roc

Hotel Eden Roc

Punta Port Salvi, s/n 17220 Sant Feliu de Guíxols Costa Brava, Girona España
Poster Synthetic Gauge Fields and Topology Poster Session III

Speaker

Richard Fletcher (MIT)

Description

When charged particles are placed in a magnetic field, the single-particle energy states form discrete, highly-degenerate Landau levels. Since all states within a Landau level have the same energy, the behaviour of the system is completely determined by the interparticle interactions and strongly-correlated behaviour such as the fractional quantum Hall effect occurs. Here, we present recent experiments from MIT on the microscopy of a rapidly-rotating Bose-Einstein condensate, in which the Coriolis force felt by a massive particle in a rotating frame plays the role of the Lorentz force felt by a charged particle in a magnetic field. In a magnetic field the X and Y coordinates of a particle do not commute, leading to a Heisenberg uncertainty relation between spatial coordinates. We exploit the ability to squeeze non-commuting variables to dynamically create a Bose-Einstein condensate occupying a single Landau gauge wavefunction, and investigate its purely interaction-driven dynamics in the lowest Landau level. We reveal a spontaneous crystallization of the fluid, driven by the interplay of interactions and the magnetic field; increasing the cloud density smoothly connects this quantum behavior to a classical Kelvin-Helmholtz-type hydrodynamic instability, driven by the sheared superfluid flow profile arising from the vector potential. Finally, we project a sharp optical boundary onto our system and demonstrate controllable injection of its associated chiral edge states, quantifying their speed, excitation energy, and dependence upon wall structure.

Primary author

Presentation materials

There are no materials yet.