
Leveraging Jupyter on Maxwell HPC:

joyful, visual and green computing

Yves Kemp, Arlena Mills-Marzoli, Neele Rahmlow, Sven Sternberger, Axel Wichmann, Frank Schlünzen

Further information:

https://maxwell.desy.de/

https://mdlma.desy.de/

https://ai.desy.de/

Maxwell HPC Cluster

Abstract: Jupyter notebooks are great tools to mitigate the complexities of (heterogeneous) HPC systems, like the Maxwell cluster at DESY which serves the

computational needs of all user facilities on campus, as well as a wide variety of applications ranging from plasma accelerators to quantum chemistry. We aim to

expand the Jupyter ecosystem using frameworks like streamlit to provide application environments tailored to the needs of less experienced users, including real-

time visualization capabilities. On this basis we are implementing for example Jupyter-driven remote desktops, user-friendly dashboards to compose or monitor

batch-jobs, and visual frontends for data catalogues like SciCat. The implementations are accompanied by visual tools for resource utilization and CO2 footprints

suitable both for users as well as admins.

GPU accelerated login

GPFS

BeeGFS

dCache

NFS

CVMFS

Scheduler Database Accounting API Characteristic

s

scontrol

squeue sinfo

sbatch

slurmctld

slurmdbd

Compute

Node

slurmd

max-display

Compute

Node

slurmd

accounting

FastX

copy

DESY network

outer space

scontrol

squeue sinfo

sbatch

slurmctld

slurmdbd

Compute

Node

slurmd

Compute

Node

slurmd

accounting

DESY network

outer space

proxy

The regular Workflow

JupyterHub as a proxy

max-display

Maxwell Dashboard

Rest API

slurm token

maxapp spawner

Virtual Desktop

maxapp spawner

maxapp spawner

Data Catalog Frontend

Rest APIs

Maxwell Dashboard

Rest API

slurm token

maxapp spawner

The Maxwell High Performance Computing cluster has all the ingredients of a typical HPC platform like low latency, fast

network (Infiniband), cluster file-systems and a scheduler (SLURM) to guarantee a rapid and fair distribution of workload on

the compute resources.The workloads and requirements are however very diverse, requiring an atomic partitioning and

very heterogeneous hardware, which makes it impossible harvesting the 4 Petaflops in a single batch job.

Most users will use the graphical login nodes (max-display) for graphical work and submission of batch-jobs. The login nodes are clustered

and well equipped with GPGPUs and memory allowing for example CAD modeling. The nodes can be reached via ssh, a FastX client or a

web-browser from anywhere in the internet, but are completely isolated from the DESY internal network for security reasons, and even root

privileges are not sufficient to modify any files on the cluster filesystem (root squashing). The impact of compromised account will be minimal.

Login to max-display

Create model

Write batch script
Submit batch job Monitor batch job

Jupyterhub modified as a dashboard service with a starting collection of pre-

configured applications. The Hub uses a custom batch-spawner to launch (most

of) the applications as jupyter-proxied batch jobs.

Applications like comsol, matlab need a graphical frontend. This can

also be a local desktop using max-display as a proxy.

proxy

JupyterHub can proxy almost every kind of application. Our batch-spawner

implementation (maxapp-spawner) creates and submits the batch scripts, defining the

proxied ports and application specific compute requirements. The proxied application

runs as a batch job entirely in user space, which makes it very simple to allow access

for example to storage, avoiding the nightmare of implementing GPFS extended ACLs

in a generic webservice. User need to remember only a single access point – the

jupyterhub – which controls and keeps track of applications.

workflow

Login to max-jhub

Launch applications

Monitor batch job

workflow

There are a few python frameworks out in the wild making

dashboarding quite easy. Streamlit is one of those

frameworks coming with strong support for data frames and

visualization.

Based on streamlit we are working on a generic dashboard which provides a quick overview on

batch-jobs, resource utilization and power consumption. It allows to create batch-scripts with zero

SLURM knowledge, use batch templates for commonly used applications and submit the job

through SLURMs REST API. An API token is generated automatically in the background, hiding all

of the clusters complexity from (inexperienced) users.

Data generated from experiments at Petra III, FLASH, Eu.XFEL are stored in GPFS. SciCat is a meta-data catalog implementation giving access

to meta-data and snapshots uploaded to the data catalog. SciCat is designed to run on cloud infrastructure being deployed on kubernetes pods.

The services naturally run in an unprivileged context, and have consequently no access to any experimental data (and k8s pods are not intended

to locally embedded storage). A streamlit application – running in user context – can be used to provide full access to data, and allow simple media

tools to view and manipulate for example images or HDF5 container; based on selections customized jupyter notebooks can be launched for data

processing. Access to jupyter notebooks and SciCat are achieved through REST API tokens without any need for user actions.

Some application do not run on the operating system of the Maxwell cluster, and some are much easier deployed as docker or singularity images. To facilitate the

process we provide a custom VNC setup for operating systems like Ubuntu 22.04 or RedHat EL9. The batch-spawner launches the corresponding image as a regular

batch-job, pulling the image from a Harbor container registry. The user can access the desktop through the jupyterhub in the web-browser, and the session can be

secured with the users password. The setup lacks GPU acceleration, and websocket proxying is not yet implemented, but for most users in need of alternative

operating systems the setup should be quite sufficient.

Artificial intelligence is heavily used on the cluster, and one of the applications in high demand is automated image segmentation and registration. A prototype has been

implemented based on mlexchange. mlexchange is a machine learning pipeline using pre-trained models and interactive web-annotation tools for iterative improvement of the

ML model. The setup uses a bluesky/tinder file catalog and plotly dashboards serving both files and application through a jupyterhub proxy’d application. The file catalog is

created on the fly as part of the batch job. While the prototype works smoothly, it still needs some components to be implemented, and the need for a file catalog is not exactly

matching our storage configuration.

The maxwell portal is the entry-point to the most prominent services on the cluster. This

includes access to the jupyterhub, R-Studio, cluster reservation tools, and the often

demanded one-click visualization of characteristics and utilization of the cluster.

SLURM tools are fairly limited for cluster visualization, and don’t report the availability of resources

which can be freed through preemption. The web-availability service is an in-house development

giving a very detailed and highly flexible view of the state of the cluster, while minimizing the load on

the SLURM scheduler.

Cluster users are not always aware of its intricate nature, which quite frequently leads

to poor utilization of resources, and a very uneven distribution of the workload on the

compute nodes. The webjobs service – also an in-house development – visualizes the

distribution at a glance, and can alert users of poor or uneven resource utilization,

which helps to maximize throughput and hence to minimize energy consumption

Job reports allow storing the job profile incl. energy

consumption persistently together with the batch

script, for later reproducibility and comparison. It

raises awareness of the costs involved and the

impact on the climate (even if it was small).

Sustainability is an important aspect in cluster management. The cluster consumes roughly 7GWh per year,

which accounts for roughly 3.3% of the energy consumed on campus. A very high cluster utilization – which

is desirable – leaves not much room for energy savings. However, with simple measures in the configuration

of the cluster automatically throttling CPUs at the end of a job, weekends average energy usage reduced

from ~690kWh to ~590kWh leading to energy savings of at least 250MWh annually.

P
ro

x
ie

d
 a

p
p

li
c
a
ti

o
n

s

S
e

rv
ic

e
s

The Federal Ministry of Education and Research (BMBF) is funding

the MDLMA project (031L0202C) within the Computational Life

Sciences funding measure as part of the federal research program

on Digitalisation and Artificial Intelligence.

https://maxwell.desy.de/
https://maxwell.desy.de/
https://maxwell.desy.de/
https://maxwell.desy.de/
https://maxwell.desy.de/
https://mdlma.desy.de/
https://mdlma.desy.de/
https://mdlma.desy.de/
https://mdlma.desy.de/
https://ai.desy.de/
https://ai.desy.de/
https://ai.desy.de/
https://ai.desy.de/

