Fechnology

Multilingual Racial Hate Speech Detection Using Transfer Learning

DIGITAL TOTAL

Abinew Ali Ayele^{1,2}, Skadi Dinter¹, Seid Muhie Yimam¹, Chris Biemann¹

¹Language Technology Group, Department of Informatics, Universität Hamburg, Hamburg, Germany

²Faculty of Computing, BiT, Bahir Dar University, Bahir Dar, Ethiopia

{abinew.ali.ayele, seid.muhie.yimam,chris.biemann}@uni-hamburg.de, skadi.dinter@posteo.de

Abstract

- Social media eases the spread of hateful or racist content.
- We employ Yandex Toloka
 crowdsourcing annotation platform.
- Annotate 5k tweets into hate, offensive or normal categories and further identify offensive & hateful tweets as racial or non-racial.
- We apply transfer learning by fine-tuning the HateXplain model based on multilingual BERT and CamemBERT.
- CamemBERT yields the best results and able to resolve annotation ties in our experiments.

Introduction

- No common definition for hate speech
- Hate Speech: hatred expressions targeting group identities such as race, color, sexual orientation, religion, etc....

Research Questions

- Can BERT and HateXplain models be efficiently adapted to other languages or cultures, specifically to racial hate speech detection tasks in French?
- What are the main challenges of racial hate speech data annotation on Toloka crowdsourcing platform?

Main Contributions

- Collections of French racial hate speech lexicon entries and dataset.
- Exploring the annotation challenges of racial hate speech on the Yandex Toloka crowdsourcing platform.
- Adaptation of a racial hate speech detection model for the French Twitter dataset.

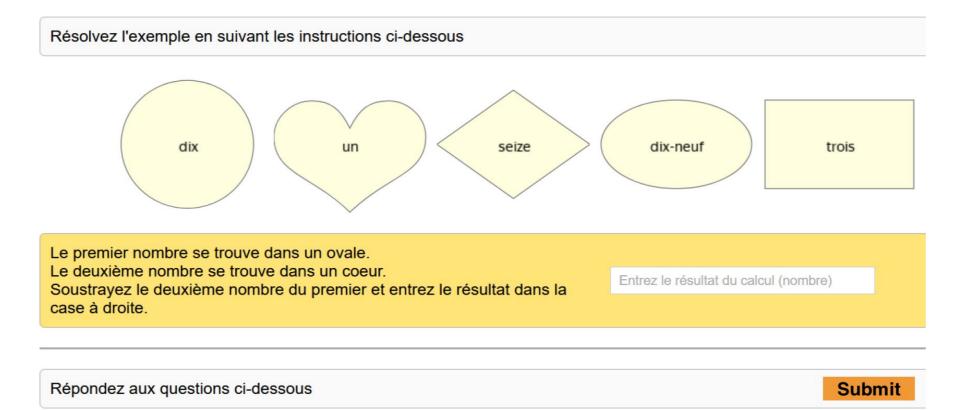
Data Collection

- Source: Tweets May 25 June 25,
 2020, after the death of G. Floyd.
- Collected 3,473 French hate speech lexicon entries.
- Apply Pycld2 to filter French tweets.
- Truncated tweets are removed
- Usernames and URLs are anonymized as <USER> and <URL>.

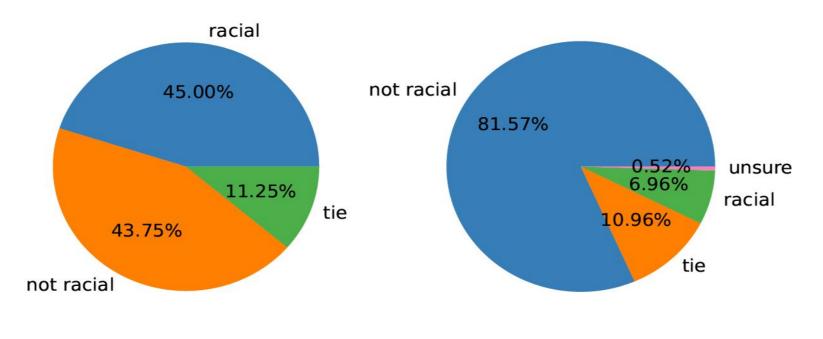
Annotation

- Annotation Tool: Toloka
- 5k tweets annotated by 3 independent performers
- Gold label: determined with majority voting
- Labels:
 - Hate, Offensive, Normal, Unsure
 - Hate & Offensive {Racial, Non-racial}
- Fleiss Kappa: 0.34
- Each annotator earned \$0.1 per task
- Control Questions:
 - 50 random tweets are annotated and evaluated by experts for correctness.
 - Each Toloka task contained 15 tweets,1 of them is a control question to control malicious performers.
- Before joining the main task, performers are given:
 - Annotation guidelines
 - o Two training task pools to be completed successfully.
 - A French language test as presented below.

Sample French Language Test

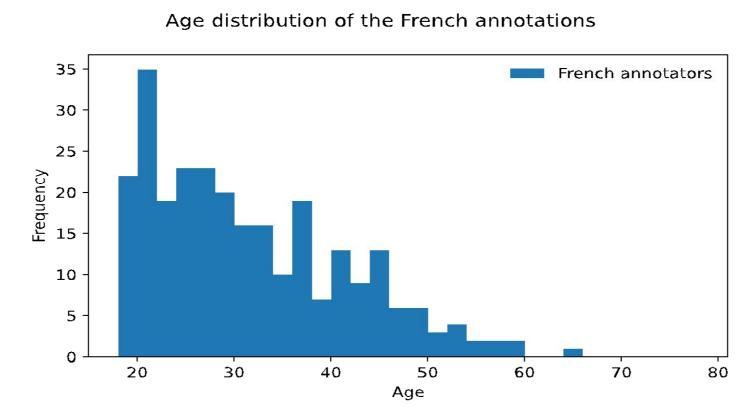


Label Distribution in the Dataset



Age Distribution of Performers

hate

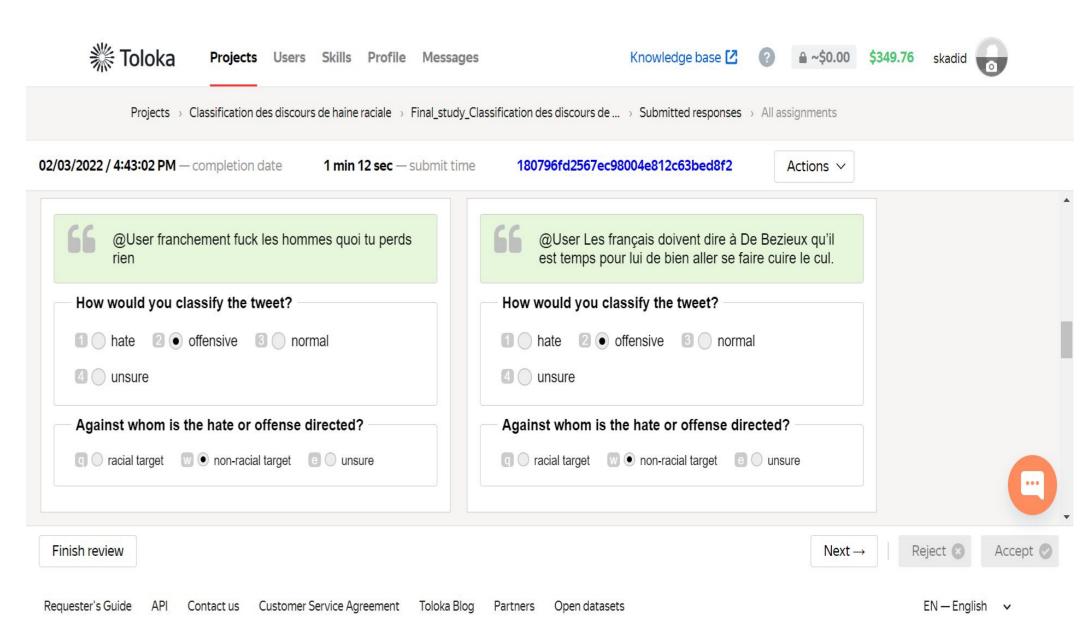


Overall Annotation Information

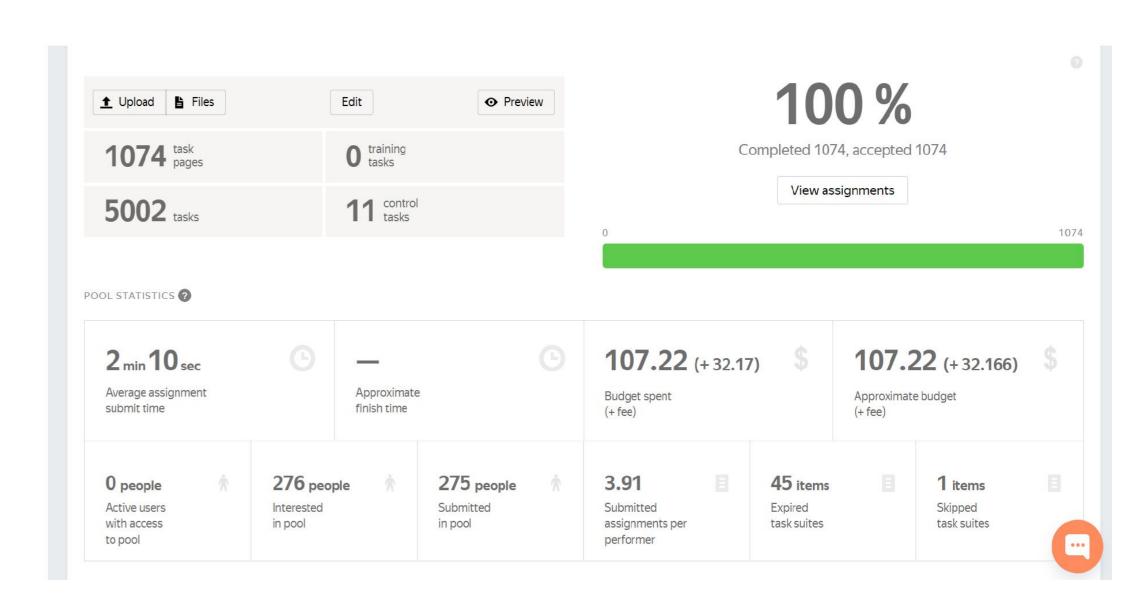
Fleiss Kappa score	0.3
Total number of Annotated tweets	5002
Number of annotators participated in the task	275
Mean age of annotators in years	31.11
Country distribution of annotators	265 Fr, 8 Be, 3 O
Accuracy for 50 random tweets	0.24
F1 score for 50 random tweets	0.24
Racial accuracy for 50 random tweets	0.12
Average time for 15 tweets	2 min 10 sec
Number of collected keywords	3473

Keys: **Fr**= French, Be= Belgium, O = Others

Sample Task Presented to Toloka Performers



Completed Annotation Project on Toloka



Experimental Results

Experiment	Pretrained Model	Label generation	Accuracy	F1-score	Ties	Training time
1.0	ML BERT	HateXplain	0.51	0.41	ī-	12m 47s
1.1	ML BERT+ HateXplain	self aggregated	0.84	0.77	no ties	3m6s
1.2	ML BERT+ HateXplain	Dawid Skene	0.78	0.69	automatically	4m3s
1.3	ML BERT+ HateXplain	self aggregated	0.65	0.51	if hate: hate, otherwise of- fensive	4m9s
2.0	camemBERT	HateXplain	0.592	0.57	32	10m45s
2.1	HateXplain on camemBERT	self aggregated	0.888	0.86	no ties	3m19s
2.2	HateXplain on camemBERT	Dawid Skene	0.806	0.75	automatically	3m54s
2.3	HateXplain on camemBERT	self aggregated	0.726	0.674	if 1 hate:hate, otherwise of- fensive	3m12s

Further Experiments Based on Exp. 2.1 above

Experiment	Accuracy	F1	Epochs	Learn. rate
2.1 a)	0.886	0.859	3	5e-5
2.1 b)	0.899	0.882	2	5e-5
2.1 c)	0.888	0.876	1	5e-5
2.1 d)	0.882	0.869	4	5e-5
2.1 e)	0.852	0.784	3	5e-4
2.1 f)	0.892	0.869	3	5e-6
2.1 g)	0.892	0.874	4	5e-6

Conclusion and Future Works

- BERT model is successfully fine-tuned with the dataset, and with the translated HateXplain dataset.
- We achieved 88% accuracy & 86% F1-score, and are improving over the baseline HateXplain model.
- In future:
 - Improve data selection strategies to reduce the class imbalance problem.
 - Explore targets and label decision rationales