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Training/Validation Data

Train

Remapped to 5° Observational Grid

Training: 10.920 steps

Validation: 1.560 steps
Hold-out (1 model): 780 steps
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U-Net

+

Partial Convolutions3

+

Complex Loss Function3

• Remarkable performance in predicting learned climate patterns

• Very good general reproducibility in the temporal development of the global mean

• Linear effect with decreasing resolution shown in spatial error (RMSE) and

spatial correlation (R²) metrics

• However, uncertainty is unknown. Investigation is following...

• In future:

Predict distributions + sample highly realistic patterns + include physics

Diffusion models using this CNN for potential improvements
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Accurate prediction

Inaccurate prediction

From Super-Resolution to Downscaling 
An Image-Inpainting Deep Neural Network for High Resolution Weather and Climate Models
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We gathered all available climate models with at least 0.5° (~55km) grid resolution in the CMIP6

HighResMIP (Haarsma et al) historical experiments. The inpainting technology by Kadow et al.

got shifted towards a Super-Resolution Convolutional Neural Network (SR-CNN) (Liu et al.).

Tested and evaluated is the trained CNN on one left out member of the HighResMIP. Starting with
the 5° (~550km) from observations HadCRUT5 up to 30° (~3,300km). Example: temperature.

Cold Pacific Example Warm Pacific Example

Inpainting

Downscaling

CRAI2

HadCRUT5 Observations July 1877
show a very strong El Nino in
temperature anomalies. Left the
original dataset. Right never seen
before 0.5° resolution.

What we want is … …a High-Res Past

kadow@dkrz.de

How?

How good?

How good can it get?


