Proteins Plus: On-The-Fly Structure-Based Design on the Web

Christiane Ehrt¹, Thorben Schulze¹, Katrin Schöning-Stierand^{1,2}, Rainer Fährrolfes¹, Konrad Diedrich¹, Joel Graef¹, Emanuel Ehmki^{1,3}, Florian Flachsenberg^{1,4}, Jochen Sieg¹, Patrick Penner¹, Jonathan Pletzer-Zelgert¹, Thorben Reim¹, Matthias Rarey¹

- Research Group for Computational Molecular Design (AMD), ZBH Center for Bioinformatics, Universität Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
- ² Present address: House of Computing and Data Science (HCDS), Universität Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
- ³ Present address: Pfizer Pharma GmbH, Linkstraße 10, 10785 Berlin
- ⁴ Present address: BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany

Corresponding Author: christiane.ehrt@uni-hamburg.de

The Proteins *Plus* web server (https://proteins.plus)¹ offers modelling support for in-depth investigation of biomolecules. Its tools provide easy access to structure-based analyses for interdisciplinary researchers through an intuitive user interface. Users can perform computational studies for approx. 195,000 experimental protein structures from the Protein Data Bank (PDB)² and millions of predicted models from the AlphaFold Protein Structure Database.³

The services include structure quality analyses for X-ray models, structure preparation (hydrogen atom assignment, water placement, metal coordination), geometric analyses, pocket prediction and characterization, binding site comparison, automated molecular docking, 2D interaction visualization, protein-protein interface classification, and mutation analyses.

In this contribution, we will present services of the Proteins *Plus* web server in a nutshell with implications on their potential application domains in structure-based design. We will also discuss several tools which are still in active development.

References

Schöning-Stierand, K., Diedrich, K., Fährrolfes, R., Flachsenberg, F., Meyder, A., Nittinger, E., Steinegger, R., and Rarey, M. (2020). ProteinsPlus: interactive analysis of protein-ligand binding interfaces. Nucleic Acids Res 48, W48-W53.

² Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235-242.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.