
Output
Stream Stream

Processing

ProducerConsumer

1 32

Enhancing Developer Experience in Near Real-Time
Scientific Data Processing: The AsapoWorker Library

Deutsches Elektronen-Synchrotron DESY,
Hamburg, Germany

Diana Rueda, Tim Schoof, Mikhail Karnevskiy, Aleksandra Tolstikova, Parthasarathy Tirumalai,
Marc-Olivier Andrez, Anton Barty

Experiments at Synchrotrons

High-Performance Processing Pipelines

The AsapoWorker Library

Conceptual diagram of an AsapoWorker

Question or suggestions? Let's discuss!
* Illustration: DESY
AsapoWorker https://gitlab.desy.de/fs-sc/asapoworker
Asapo https://asapo.pages.desy.de/asapo/
Xdi Pipeline https://gitlab.desy.de/fs-sc/analysis-pipelines/xdi_pipeline
Questions/comments diana.rueda@desy.de, tim.schoof@desy.de, marc-olivier.andrez@desy.de
We gratefully acknowledge funding from the Helmholtz Association HGF for the ROCK-IT project.

Conceptual diagram of an analysis pipeline including AsapoWorkers

Medical research as one the applications *

Synchrotron light sources generate intense, high-energy X-rays that
enable molecular-level analysis of materials, revolutionizing research
fields from drug discovery to materials science. By revealing the
structure and properties of complex biological systems, synchrotrons
provide critical insights that drive breakthroughs in pharmaceutical
development and medical treatments.

Experiments at these facilities generate high-volume data at speeds
up to 2kHz with large payloads, requiring near-real-time processing
for experiment steering decisions. A streaming technology is needed
to efficiently transfer these large messages to the HPC cluster for
parallel processing and return results to users with minimal latency.

Main Features

To address these challenges, DESY has developed Asapo, a distributed
streaming framework designed to handle very large data payloads. While
this framework provides fundamental building blocks, their complexity
necessitated the creation of AsapoWorker, a higher-level abstraction that
simplifies the construction of real-time data processing pipelines.

We encourage you to visit the poster:
#39. Framework for Distributed Near Real-Time Data Processing Pipelines.

AsapoWorker aims to encapsulate diverse analytical processes as
standardized worker components that can be seamlessly integrated into
processing pipelines. These workers can wrap various types of analyses,
including data preprocessing, scientific algorithms, and machine
learning inference tasks.

The AsapoWorker library originated from a collection of scripts that were
repeatedly written to run processing pipelines on the Asapo streaming
platform. Distributed data analysis presents unique challenges that must
be addressed by workers to ensure reliable data processing.

The conceptual diagram above illustrates the main logical components of
the AsapoWorker. Components 1 and 3 are data handlers, with 1
performing deserialization and 3 performing serialization. Component 2
represents the actual analysis method in Python, which can be adapted
from conventional analysis approaches that process one message (image
or scan) at a time.

Some of the main benefits of using the AsapoWorker library include:

- Error Handling: Automatic detection and handling of processing failures
with fail-fast behavior, preventing corrupted results.
- Stream Management: Automatically process new streams as they
become available. Intelligent logic to detect stream completion and
shutdown workers, preventing infinite blocking on receiver failures.
- Configurable input parameters: Easily customize parameters to run
multiple workers with different configurations for result comparison.
- Python code integration: Seamlessly integrate existing Python analysis
code into the streaming pipeline system.

Planned improvements

To promote adoption of the AsapoWorker library, we are considering the
following improvements:

+ Enhanced Documentation: Simplify onboarding with comprehensive
guides and practical examples that users can build upon.
+ Configuration File Support: Replace lengthy command-line arguments
with structured configuration files for easier parameter management.
+ Multiple output streams: Providing flexibility for specialized use cases.

Input

