

Hybrid colloidal assemblies from nanocrystals

Hybrid metal–semiconductor nanostructures offer promising properties by combining fast electron transfer with efficient charge separation. While metal growth on nanorods is well-studied, selective growth on quasi-2D CdSe nanoplatelets (NPLs) remains underexplored. CdSe NPLs, only a few monolayers thick, exhibit exceptional optical features such as high quantum yields and narrow emission bands. [1] The stacking behavior of rigid 5ML NPLs, with their non-bending features, facilitates efficient exciton transfer between neighboring platelets.[2] Polymer encapsulation further stabilizes these structures and provides a versatile platform for surface functionalization.[3] In this poster, we demonstrate regioselective growth of noble metals, such as Palladium (Pd), on 5ML CdSe NPLs using a simple synthetic strategy. We show that the precursor-to-NPL ratio significantly influences the growth mode and site selectivity at the edges and corners of the NPLs. Additionally, we explore polymer encapsulation of non-hybrid NPLs to enhance their stability and enable further surface modifications for possible future applications.

References

- [1] S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, N. C. Bigall, Chemistry of Materials 2015, 27, 3159-3166.
- [2] J. F. Miethe, A. Schlosser, J. G. Eckert, F. Lubkemann, N. C. Bigall, J Mater Chem C Mater 2018, 6, 10916-10923.
- [3] R. T. Graf, A. Schlosser, D. Zámbó, J. Schlenkrich, P. Rusch, A. Chatterjee, H. Pfnür, N. C. Bigall, Advanced Functional Materials 2022, 32.

Author: ISLAM, Fahima (Universität Hamburg)

Co-authors: Prof. BIGALL, Nadja-Carola (University of Hamburg); Dr VOSSEYER, Tobias (University of Hamburg)

Presenter: ISLAM, Fahima (Universität Hamburg)

Session Classification: MIN Materials

Track Classification: MIN Materials of the Future