

Photothermal Activation of Gold Nanoparticles Star-shaped Induces Calcium Release in T-lymphocytes

Friday 10 October 2025 12:30 (30 minutes)

Calcium ions (Ca^{2+}) are critical secondary messengers in T cells, governing activation, gene expression, and effector functions. Precisely manipulating intracellular Ca^{2+} levels is a powerful but challenging approach for studying immunology and developing therapies for immune-related diseases.

We utilised the unique photothermal properties of gold nanostars (AuNSs), which were internalised by Jurkat T cells. Upon irradiation with a laser tuned to the AuNSs' absorption peak, the nanoparticles converted light to heat, inducing a localised temperature increase.

This photothermal stimulus triggered a rapid and significant release of intracellular Ca^{2+} . Real-time live-cell imaging using a Ca^{2+} -binding fluorophore revealed a distinct fluorescence peak corresponding to the laser stimulus. Co-localisation studies indicated that the initial Ca^{2+} microdomains originated from lysosomal stores, subsequently amplifying into a global cellular signal.

We demonstrate a novel, non-invasive method for the precise spatiotemporal control of Ca^{2+} signalling in T cells using photothermal nanoparticles. This technique provides a valuable tool for probing fundamental immunology and has promising therapeutic potential for modulating immune responses in cancer, autoimmunity, and inflammation.

Authors: Dr POZZI, Maria (Universität Hamburg); LUONGO, Maya (Universität Hamburg)

Co-authors: GUSE, Andreas H. (Universität UKE- Medical Center Hamburg-Eppendorf); Dr VILLA, Stefano (Max Planck Institutes); PARAK, Wolfgang (Uni Hamburg)

Presenter: LUONGO, Maya (Universität Hamburg)

Session Classification: Poster Presentation - DESY Foyer (Building 5)

Track Classification: MIN Life Science