
6Quasigeostrophic Dynamics of the Stratified
Atmosphere

Strictly spoken the shallow-water equations only hold under conditions not valid for the
atmosphere. Both the assumption of a constant density and the one of vanishing vertical
gradients in the horizontal wind are not realistic. These will now be dropped. We will not,
however, treat the atmosphere in full generality but rather focus on the synoptic scales and
derive the corresponding quasigeostrophic theory. This will enable us to describe not only
the vertical structure and vertical propagation of Rossby waves but also the generation of
synoptic-scale extratropical weather by baroclinic instability.

6.1 Quasigeostrophic Theory and Its Potential Vorticity

6.1.1 Analysis of Momentum and Continuity Equation

Scale Analysis
Much in the derivation of the quasigeostrophic theory of the baroclinic atmosphere resembles
the corresponding theory for the shallow-water equations. In addition to there we here split
the thermodynamic fields into a part from a hydrostatic reference atmosphere at rest, with
only vertical spatial dependence, and the deviations therefrom.We thuswrite, with z = r−a,

ρ = ρ (z) + ρ̃ (λ, φ, z, t) (6.1)

and
p = p (z) + p̃ (λ, φ, z, t) (6.2)

where the reference-atmosphere part satisfies

d p

dz
= −gρ (6.3)
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Wealso demand that, in agreementwith observations, the density deviations from the density
of the reference atmosphere are small:

|ρ̃| � ρ (6.4)

For reasons which will become clear below we choose an altitude-dependent scaling for the
pressure and density fluctuations:

p̃ = P (z) p̂ (6.5)

ρ̃ = R (z) ρ̂ (6.6)

Following (6.4) we haveR � ρ.
As already in quasigeostrophic shallow-water theory we introduce a horizontal length

scale L = 103 km and a horizontal-wind scale U = 10m/s so that, with some reference
longitude and latitude λ0 and φ0, respectively, and consistent with the estimates (5.38) and
(5.39) (

λ

φ

)
=

(
λ0

φ0

)
+ L

a

(
λ̂

φ̂

)
(6.7)

and
u = U û (6.8)

The time scale is again

t = L

U
t̂ (6.9)

In addition we introduce a vertical length scale H = 10km and a scale W for the vertical
wind so that

z = Hẑ (6.10)

w = W ŵ (6.11)

The vertical length scale approximately corresponds to the height of typical synoptic-scale
weather structures, but also to the vertical extent of the troposphere and its hydrostatic scale
height. The vertical-wind scale can be related to the horizontal-wind scale via the continuity
equation

Dρ

Dt
+ ρ∇ · v = 0 (6.12)

Due to (6.4) the latter is approximately

w
dρ

dz
+ ρ∇ · v = 0 (6.13)
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or, in local Cartesian coordinates,

∇ · u + 1

ρ

∂

∂z
(ρw) = 0 (6.14)

The non-dimensionalization of this equation yields

U

L
∇̂ · û + W

H

1

ρ

∂

∂ ẑ

(
ρŵ

) = 0 (6.15)

For an equilibration between the two terms one needs

W = H

L
U (6.16)

Therefore the vertical winds must be weaker than the horizontal winds by at least two orders
of magnitude. Below we will see that this is actually only an estimate of an upper bound.

No we turn to the two horizontal-momentum equations. Because of r = a+ z and (6.10)
one has

r = a

(
1 + H

a
ẑ

)
(6.17)

where H/a ≈ 10−3 � 1. Inserting this together with (6.7–6.11) and (6.16) into the material
derivative (1.107) yields

D

Dt
= U

L

D̃

Dt̂
(6.18)

with the non-dimensional material derivative

D̃

Dt̂
= ∂

∂ t̂
+ û(

1 + H

a
ẑ

)
cosφ

∂

∂λ̂
+ v̂

1 + H

a
ẑ

∂

∂φ̂
+ ŵ

∂

∂ ẑ
(6.19)

Moreover, one has
2� sin φ = f = f0 f̂ (6.20)

with

f0 = 2� sin φ0 (6.21)

f̂ = sin φ

sin φ0
(6.22)

and

2� cosφ = aβ
cosφ

cosφ0
(6.23)

with

β = 2� cosφ0

a
= f0

L
Roβ̂ (6.24)

β̂ = 1

Ro

L

a
cot φ0 = O(1) (6.25)
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Non-dimensionalization of the horizontal-momentum equations in (1.105) via (6.1), (6.2),
(6.5–6.11), and (6.16) yields, also using (6.17) and (6.18),

Ro
D̃û

Dt̂
− L

a
Ro

ûv̂

1 + H

a
ẑ
tan φ + H

L

L

a
Ro

ûŵ

1 + H

a
ẑ

− f̂ v̂ + H

L

a

L
Roβ̂

cosφ

cosφ0
ŵ

= − P
ρL f0U

1(
1 + R

ρ
ρ̂

) 1(
1 + H

a
ẑ

) 1

cosφ

∂ p̂

∂λ̂
(6.26)

Ro
D̃v̂

Dt̂
+ L

a
Ro

û2

1 + H

a
ẑ
tan φ + H

L

L

a
Ro

ûŵ

1 + H

a
ẑ

+ f̂ û

= − P
ρL f0U

1(
1 + R

ρ
ρ̂

) 1(
1 + H

a
ẑ

) ∂ p̂

∂φ̂
(6.27)

Since the Rossby number is with the chosen scaling Ro = O(10−1) the Coriolis term is the
only term on the left-hand side of these equations which is not small. It can only be balanced
by the pressure-gradient term on the right-hand side if

P = ρL f0U (6.28)

Thus we indeed obtain an altitude-dependent pressure scale so that

p = p(z) + ρL f0U p̂ (6.29)

In the treatment of the vertical-momentum equation in (1.105) we first rewrite the right-hand
side via (6.1) and (6.2):

Dw

Dt
− u2 + v2

r
− 2� cosφu = −

[
1

ρ + ρ̃

(
d p

dz
+ ∂ p̃

∂z

)
+ g

]
(6.30)

We further use the hydrostatic equilibrium (6.3) of the reference atmosphere and obtain

Dw

Dt
− u2 + v2

r
− 2� cosφu = −

[
gρ̃

ρ + ρ̃
+ 1

ρ + ρ̃

∂ p̃

∂z

]
(6.31)

Now we proceed as in the non-dimensionalization of the horizontal-momentum equations,
also using (6.6), and obtain
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H

L
Ro

D̃ŵ

Dt̂
− L

a
Ro

û2 + v̂2

1 + H

a
ẑ

− a

L
Roβ̂

cosφ

cosφ0
û

= − L

H

⎡
⎢⎢⎣ ρ̂

1 + R
ρ

ρ̂

RgH

ρ f0UL
+ 1

1 + R
ρ

ρ̂

1

ρ

∂

∂ ẑ
(ρ p̂)

⎤
⎥⎥⎦ (6.32)

Among the terms on the left-hand side the last is the largest. It is of orderO(1) and thus still
small compared to the factor H/L � 1 on the right-hand side. We conclude that at least to
leading order the terms in the bracket on the right-hand side must cancel each other, which
again only is possible if

R = L f0Uρ

gH
= ρRo

L2

L2
d

(6.33)

One thus also sees thatR � ρ, consistent with the basic assumptions.Moreover one obtains

ρ = ρ

(
1 + ρRo

L2

L2
d

ρ̂

)
(6.34)

With this choice the vertical-momentum equation becomes

H

L
Ro

D̃ŵ

Dt̂
− L

a
Ro

û2 + v̂2

1 + H

a
ẑ

− a

L
Roβ̂

cosφ

cosφ0
û

= − L

H

⎡
⎢⎢⎢⎣

ρ̂

1 + Ro
L2

L2
d

ρ̂

+ 1

1 + Ro
L2

L2
d

ρ̂

1

ρ

∂

∂ ẑ
(ρ p̂)

⎤
⎥⎥⎥⎦ (6.35)

The non-dimensionalization of the continuity equation works the same way. We first non-
dimensionalize the divergence in (1.109) as

∇ · v = U

L

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇̂ · û + 1(
1 + H

a
ẑ

)2

∂

∂ ẑ

[(
1 + H

a
ẑ

)2

ŵ

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= U

L

[
∇̂ · û + ∂ŵ

∂ ẑ
+ O

(
H

a

)]
(6.36)



184 6 Quasigeostrophic Dynamics of the Stratified Atmosphere

with the non-dimensional horizontal divergence

∇̂ · û = 1

1 + H

a
ẑ

[
1

cosφ

∂ û

∂λ̂
+ 1

cosφ

∂

∂φ̂

(
cosφv̂

)]
(6.37)

This and (6.34) lead, in a non-dimensionalization closely analogous to what has been
demonstrated above, to

Ro
L2

L2
d

D̃ρ̂

Dt̂
+

(
1 + Ro

L2

L2
d

ρ̂

)[
∇̂ · û + 1

ρ

∂

∂ ẑ
(ρŵ) + O

(
H

a

)]
= 0 (6.38)

Local Geometry and Characterization in Terms of Powers of the Rossby
Number
From the definition (5.85) of the external Rossby deformation radius follows, with H =
10km and f0 = 10−4 s−1, that

Ld ≈ 3000 km (6.39)

But L = 1000km, so that we can use the central assumption

L2

L2
d

= O(Ro) (6.40)

where at the given scaling Ro = O(10−1). One should note that this differs from the
assumption L2/L2

d = O(1) used in the derivation of shallow-water quasigeostrophic theory.
With our choice of length scales one obtains moreover

H

L
= O(Ro2)

L

a
= O(Ro)

H

a
= O(Ro3) (6.41)

Since L/a = O(Ro) � 1, we expand the various trigonometric functions of the geographic
latitude about the reference latitude and thus arrive at the local geometry of the β-plane.
Thus, using (6.7),

1

cosφ

∂

∂λ̂
=

{
1 + tan φ0

L

a
φ̂ + O

[(
L

a

)2
]}

1

cosφ0

∂

∂λ̂

=
(
1 + L

a
tan φ0 ŷ

)
∂

∂ x̂
+ O (

Ro2
)

(6.42)

where (
x̂, ŷ

) =
(
cosφ0 λ̂, φ̂

)
(6.43)

are the non-dimensional horizontal coordinates of the β-plane tangential at (λ0, φ0), as can
be read via (5.40), (5.41), and (x, y) = L(x̂, ŷ) from (6.7). Correspondingly one also has
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∂

∂φ̂
= ∂

∂ ŷ
(6.44)

so that the material derivative can be rewritten, also using

1

1 + H

a
ẑ

= 1 + O
(
H

a

)
= 1 + O (

Ro3
)

(6.45)

as
D̃

Dt̂
= D̂

Dt̂
+ Ro

L/a

Ro
tan φ0

∂

∂ x̂
+ O (

Ro2
)

(6.46)

with the definition
D̂

Dt̂
= ∂

∂ t̂
+ û

∂

∂ x̂
+ v̂

∂

∂ ŷ
+ ŵ

∂

∂ ẑ
(6.47)

Beyond this we have

tan φ = O (1) (6.48)
cosφ

cosφ0
= O (1) (6.49)

and, with (6.22) and f̂0 = 1,

f̂ = f̂0 + cot φ0
L

a
φ̂ + O

[(
L

a

)2
]

= f̂0 + Roβ̂ ŷ + O (
Ro2

)
(6.50)

and
1

1 + R
ρ

ρ̂

= 1

1 + Ro
L2

L2
d

ρ̂

= 1 + O
(
Ro

L2

L2
d

)
= 1 + O (

Ro2
)

(6.51)

Using all these estimates we now rewrite the horizontal-momentum equations (6.26) and
(6.27) so that only the larger terms are expressed explicitly that will be needed in the further
treatment below. One obtains

Ro

[
D̂û

Dt̂
+ O (Ro)

]
−

[
f̂0 + Roβ̂ ŷ + O (

Ro2
)]

v̂ + O (
Ro2

)

= −
(
1 + L

a
tan φ0 ŷ

)
∂ p̂

∂ x̂
+ O (

Ro2
)

(6.52)



186 6 Quasigeostrophic Dynamics of the Stratified Atmosphere

Ro

[
D̂v̂

Dt̂
+ O (Ro)

]
+

[
f̂0 + Roβ̂ ŷ + O (

Ro2
)]

û + O (
Ro2

)

= −∂ p̂

∂ ŷ
+ O (

Ro2
)

(6.53)

Likewise the vertical-momentum equation (6.35) becomes

O (1) = − L

H

[
ρ̂ + 1

ρ

∂

∂ ẑ

(
ρ p̂

) + O (
Ro2

)] L

H
= O (

Ro−2) (6.54)

For the continuity equation (6.38) we first reformulate ∇̃ · û in (6.37). Expansion about the
reference latitude φ0 yields, with φ̂ = ŷ,

1

cosφ

∂

∂φ̂

(
cosφ v̂

) = ∂v̂

∂ ŷ
− L

a
tan φ0 v̂ + O (

Ro2
)

(6.55)

This together with (6.42) leads to

∇̃ · û = [
1 + O (

Ro3
)] [∇̂ · û + L

a
tan φ0

(
ŷ
∂ û

∂ x̂
− v̂

)
+ O (

Ro2
)]

(6.56)

where

∇̂ · û = ∂ û

∂ x̂
+ ∂v̂

∂ ŷ
(6.57)

Hence (6.38) becomes

0 = O (
Ro2

)

+
(
1 + Ro

L2

L2
d

){ [
1 + O (

Ro3
)] [∇̂ · û + L

a
tan φ0

(
ŷ
∂ û

∂ x̂
− v̂

)
+ O (

Ro2
)]

+ 1

ρ

∂

∂ ẑ

(
ρŵ

) + O (
Ro3

) }
(6.58)

Scale-Asymptotic Treatment
As in the shallow-water case we now expand all fields in the Rossby number:

⎛
⎝ v̂

ρ̂

p̂

⎞
⎠ =

∞∑
i = 0

Roi

⎛
⎝ v̂i

ρ̂i

p̂i

⎞
⎠ (6.59)

This is inserted into (6.52–6.54) and (6.58), and then all is sorted in terms of powers of Ro.
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The leading order of the horizontal-momentum equations is O(1). It yields

v̂0 = 1

f̂0

∂ p̂0
∂ x̂

û0 = − 1

f̂0

∂ p̂0
∂ ŷ

(6.60)

(6.61)

This is the geostrophic equilibrium of the horizontal wind to leading order. A consequence
is that the latter has no divergence:

∇̂ · û0 = 0 (6.62)

The leading order of the vertical-momentum equation is O(Ro−2). One obtains

ρ̂0 + 1

ρ

∂

∂ ẑ
(ρ p̂0) = 0 (6.63)

This means that the leading-order pressure and density fluctuations are in hydrostatic equi-
librium. The leading order of the continuity equation is O(1), yielding

∇̂ · û0 + 1

ρ

∂

∂ ẑ
(ρŵ0) = 0 (6.64)

which is, because of (6.62), equivalent to

1

ρ

∂

∂ ẑ
(ρŵ0) = 0 (6.65)

Since ρ → 0 for z → ∞, a diverging vertical wind at infinity can only be avoided by having
everywhere

ŵ0 = 0 (6.66)

Hence, the vertical wind is not only weaker than the horizontal wind by a factor H/L but
even by a factor Ro H/L .

Now turning to the next orderO(Ro) of the horizontal-momentum equations, we obtain

D0

Dt̂
û0 − f̂0v̂1 − β̂ ŷv̂0 = −∂ p̂1

∂ x̂
− L/a

Ro
tan φ0 ŷ

∂ p̂0
∂ x̂

(6.67)

D0

Dt̂
v̂0 + f̂0û1 + β̂ ŷû0 = −∂ p̂1

∂ ŷ
(6.68)

where
D0

Dt̂
= ∂

∂ t̂
+ û0

∂

∂ x̂
+ v̂0

∂

∂ ŷ
(6.69)

is the non-dimensional form of the quasigeostrophicmaterial derivative. Via ∂ (6.68) /∂x−∂

(6.67) ∂ y we obtain the equation
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D0ζ̂0

Dt̂
+ v̂0

∂

∂ ŷ
β̂ ŷ = − f̂0

[
∇̂ · û1 + L/a

Ro
tan φ0

(
ŷ
∂ û0
∂ x̂

− v̂0

)]
(6.70)

for the non-dimensional quasigeostrophic vorticity

ζ̂0 = ∂v̂0

∂ x̂
− ∂ û0

∂ ŷ
= 1

f̂0

(
∂2 p̂0
∂ x̂2

+ ∂2 p̂0
∂ ŷ2

)
(6.71)

where again (6.62) has been used, and, also resulting therefrom,

∂û0
∂ x̂

· ∇̂v̂0 = 0 (6.72)

∂û0
∂ ŷ

· ∇̂û0 = 0 (6.73)

On the other hand, the O(Ro) of the continuity equation yields

0 = ∇̂ · û1 + L/a

Ro
tan φ0

(
ŷ
∂ û0
∂ x̂

− v̂0

)
+ 1

ρ

∂

∂ ẑ
(ρŵ1) (6.74)

so that we obtain the quasigeostrophic vorticity equation

D0

Dt̂

(
ζ̂0 + β̂ ŷ

)
= 1

ρ

∂

∂ ẑ

(
ρŵ1

)
(6.75)

This equation is not closed. All terms on the left-hand side can be calculated from p̂0 and
its derivatives. A connection to ŵ1, however, is not yet discernible. For further progress we
now turn to the thermodynamics, in the form of the entropy equation.

6.1.2 Analysis of the Entropy Equation

We first consider potential temperature. By way of (6.28), (5.70), and (5.85) the pressure
can be written as

p = p

(
1 + gHρ

p
Ro

L2

L2
d

p̂

)
(6.76)

Since the reference atmosphere is hydrostatic and H approximately corresponds to the
hydrostatic scale height, one has gHρ/p = O(1) so that the second term in (6.76) is
small. Expressing the temperature in the definition (2.91) of the potential temperature via
the equation of state (2.3) in terms of pressure and density we obtain

θ = p00
Rρ

(
p00
p

)R/cp−1

(6.77)
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which yields, with the help of (6.1), (6.6), (6.33), and (6.76)

θ = θ

(
1 + ρ

p
gH Ro

L2

L2
d

p̂

)1−R/cp

(
1 + Ro

L2

L2
d

ρ̂

) (6.78)

where

θ = p00
Rρ

(
p00
p

)R/cp−1

(6.79)

is the reference-atmosphere potential temperature. Due to (6.40) this leads to

θ

θ
= 1 − Ro

L2

L2
d

ρ̂ +
(
1 − R

cp

)
gHρ

p
Ro

L2

L2
d

p̂ + O (
Ro4

)
(6.80)

The order of magnitude of the second but last term in (6.80) needs closer consideration.
First, due to the hydrostatic equilibrium (6.3) of the reference atmosphere, and (6.10), one
has

1

H

d p

dẑ
= −gρ (6.81)

so that (
1 − R

cp

)
gHρ

p
=

(
R

cp
− 1

)
1

p

d p

dẑ
(6.82)

Moreover from (6.79) follows

1

θ

dθ

dẑ
= − 1

ρ

dρ

dẑ
−

(
R

cp
− 1

)
1

p

d p

dẑ
(6.83)

so that (6.82) becomes (
1 − R

cp

)
ρgH

p
= −1

θ

dθ

dẑ
− 1

ρ

dρ

dẑ
(6.84)

Since H corresponds to the atmospheric scale height one has

1

ρ

dρ

dẑ
= O (1) (6.85)

On the other hand, due to (2.143) and (6.10)

1

θ

dθ

dẑ
= HN 2

g
(6.86)
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holds. In the troposphere typically N 2 = O(10−4s−2) so that

HN 2

g
= O

(
104 · 10−4

10

)
= O (Ro) (6.87)

Thus one can write
1

θ

dθ

dẑ
= RoN̂ 2 (6.88)

where

N̂ 2 = HN 2

gRo
= O (1) (6.89)

Using (6.84) and (6.88) one can finally rewrite (6.80) as

θ = θ

[
1 − Ro

L2

L2
d

(
ρ̂ + p̂

ρ

dρ

dẑ

)
+ O (

Ro3
)]

(6.90)

We therefore write

θ = θ

(
1 + Ro

L2

L2
d

θ̂

)
(6.91)

and expand θ̂ in terms of Ro:

θ̂ =
∞∑
i=0

Roi θ̂i (6.92)

The comparison with (6.90) yields

θ̂0 = −ρ̂0 − p̂0
ρ

dρ

dẑ
(6.93)

which gives together with (6.63)

θ̂0 = ∂ p̂0
∂ ẑ

(6.94)

To leading order the deviation of potential temperature from its reference-atmosphere value
is thus determined by p̂0. A consequence of this is the thermal-wind relation, since the
vertical derivatives of (6.60) and (6.61) yield, using (6.94) and f̂0 = 1,

∂ û0
∂ ẑ

= − ∂θ̂0

∂ ŷ

∂v̂0

∂ ẑ
=∂θ̂0

∂ x̂

(6.95)

(6.96)

As a consequence of hydrostatic and geostrophic equilibrium, the horizontal potential-
temperature gradients are thus equivalent to vertical gradients of the horizontal wind.
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Now consider the entropy equation (2.126) without friction and heat conduction. In
analogous manner to the treatment of the momentum and continuity equations, also using
(6.91), we first non-dimensionalize the left-hand side. The result is

U

L

D̃

Dt̂

[
θ

(
1 + Ro

L2

L2
d

θ̂

)]
= qθ

cpT
(6.97)

Since θ is only altitude-dependent one obtains, also with the help of (6.88),

Ro
D̃θ̂

Dt̂
+

(
1 + Ro

L2

L2
d

θ̂

)
RoN̂ 2

L2/L2
d

ŵ = q

cpT

L2
d

U L

θ

θ
(6.98)

Due to (6.46) and (6.47) the material derivative is given to leading order by the quasigeostro-
phic material derivative (6.69). Moreover, the vertical wind becomes to leading order Roŵ1.
Further resorting to (6.40) one sees that the leading order of the left-hand side of this equation
is O(Ro) so that we write for consistency

q

cpT

L2
d

U L

θ

θ
= RoQ̂ (6.99)

The leading order O(Ro) of the total equation is thus

D0θ̂0

Dt̂
+ Sŵ1 = Q̂ (6.100)

where

S = Ro
L2
d

L2 N̂
2 = O (1) (6.101)

is a stability parameter. Nowwe have succeeded since (6.100) can be solved for ŵ1, yielding

ŵ1 = 1

S

(
Q̂ − D0θ̂0

Dt̂

)
(6.102)

6.1.3 Quasigeostrophic Potential Vorticity in the Stratified Atmosphere

The vertical wind from the estimate (6.102) above is now used in the vorticity equation
(6.75). One has

1

ρ

∂

∂ ẑ
(ρŵ1) = 1

ρ

∂

∂ ẑ

(
ρ
Q̂

S

)
− 1

ρ

∂

∂ ẑ

(
ρ

S

D0θ̂0

Dt̂

)
(6.103)

Since ρ/S only depends on ẑ, the second term is, with the definition (6.69) of the quasi-
geostrophic material derivative,
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1

ρ

∂

∂ ẑ

(
ρ

S

D0θ̂0

Dt̂

)
= 1

ρ

∂

∂ ẑ

[
D0

Dt̂

(
ρ

S
θ̂0

)]

= D0

Dt̂

[
1

ρ

∂

∂ ẑ

(
ρ

S
θ̂0

)]
+ 1

S

(
∂ û0
∂ ẑ

∂θ̂0

∂ x̂
+ ∂v̂0

∂ ẑ

∂θ̂0

∂ ŷ

)

= D0

Dt̂

[
1

ρ

∂

∂ ẑ

(
ρ

S
θ̂0

)]
(6.104)

In the last step the thermal-wind relations (6.95) and (6.96) have been used. Thus one has

1

ρ

∂

∂ ẑ

(
ρŵ1

) = 1

ρ

∂

∂ ẑ

(
ρ

S
Q̂

)
− D0

Dt̂

[
1

ρ

∂

∂ ẑ

(
ρ

S
θ̂0

)]
(6.105)

Inserting this into (6.75) finally yields the desired non-dimensional conservation equation

D0

Dt̂

[
ζ̂0 + β̂ ŷ + 1

ρ

∂

∂ ẑ

(
ρ

S
θ̂0

)]
= 1

ρ

∂

∂ ẑ

(
ρ

S
Q̂

)
(6.106)

Now also defining the non-dimensional streamfunction

ψ̂ = p̂0 (6.107)

so that due to (6.94)

θ̂0 = ∂ψ̂

∂ ẑ
(6.108)

and, because of the geostrophy (6.60) and (6.61) of the horizontal wind and f̂0 = 1, one
also has

û0 = −∂ψ̂

∂ ŷ
(6.109)

v̂0 = ∂ψ̂

∂ x̂
(6.110)

the conservation equation becomes

(
∂

∂ t̂
− ∂ψ̂

∂ ŷ

∂

∂ x̂
+ ∂ψ̂

∂ x̂

∂

∂ ŷ

)[
∂2ψ̂

∂ x̂2
+ ∂2ψ̂

∂ ŷ2
+ β̂ ŷ + 1

ρ

∂

∂ ẑ

(
ρ

S

∂ψ̂

∂ ẑ

)]
= 1

ρ

∂

∂ ẑ

(
ρ

S
Q̂

)

(6.111)
For practical use we now re-introduce the dimensions. First we define for the streamfunction

ψ = ULψ̂ (6.112)
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so that the geostrophic wind

ug =
(
ug
vg

)
= U

(
û0
v̂0

)
(6.113)

can be calculated from this, using (6.109) and (6.110), as

ug = −∂ψ

∂ y

vg = ∂ψ

∂x

(6.114)

(6.115)

Moreover one has on the β-plane

(
x
y

)
= L

(
x̂
ŷ

)
(6.116)

Via the definition (5.85) of the external Rossby deformation radius and (6.89) one also finds
that

S = L2
di

L2 (6.117)

where

Ldi = HN

f0
(6.118)

is the internal Rossby deformation radius. Finally also using (6.9) for the redimensionaliza-
tion of time, (6.10) for that of ẑ, and taking (6.24) and (6.25) into consideration, one finally
obtains the conservation equation

Dgπ

Dt
= 1

ρ

∂

∂z

(
ρ
f0g

N 2

q

cpT

)
(6.119)

for the quasigeotrophic potential vorticity

π = ∇2
hψ + f0 + β y + 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)
(6.120)

where
Dg

Dt
= ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂ y
= ∂

∂t
− ∂ψ

∂ y

∂

∂x
+ ∂ψ

∂x

∂

∂ y
(6.121)

is the quasigeostrophic material derivative. Here we have used the approximation, at good
accuracy, that θ/θT = T . Furthermore one has

∇2
hψ =

(
∂2

∂x2
+ ∂2

∂ y2

)
ψ (6.122)
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Without heating (and friction and heat conduction) the quasigeostrophic potential vorticity
π is thus conserved. Most importantly, the conservation equation is a prognostic equation
for the streamfunction from which all other fields can be determined. The horizontal wind
follows from geostrophy. The vertical wind is via (6.94), (6.102), and (6.107)

w = WRo ŵ1 = Ro
W

S

(
Q̂ − D0θ̂0

Dt̂

)
= Ro

W

S

(
Q̂ − D0

Dt̂

∂ψ̂

∂ ẑ

)
(6.123)

With the help of (6.16), (5.85), (6.99), (6.117), (6.118) and all the redimensionalization steps
having led to (6.119) one obtains from this

w = g

N 2

q

cpT
− f0

N 2

Dg

Dt

∂ψ

∂z
(6.124)

Pressure is obtained via (6.29), (6.107), and (6.112), yielding

p = p + f0ρψ (6.125)

Finally potential temperature is, via (6.91), (5.85), (6.107), (6.112), and (6.10)

θ = θ

(
1 + f0

g

∂ψ

∂z

)
(6.126)

while it is left as an exercise to the interested reader to show that

ρ = ρ

[
1 − f0

g

1

ρ

∂

∂z
(ρψ)

]
(6.127)

In a summary all fields, obtained from the streamfunction, are

u = −∂ψ

∂ y

v = ∂ψ

∂x

w = g

N 2

q

cpT
− f0

N 2

Dg

Dt

∂ψ

∂z

p = p + f0ρψ

ρ = ρ

[
1 − f0

g

1

ρ

∂

∂z
(ρψ)

]

θ = θ

(
1 + f0

g

∂ψ

∂z

)

(6.128)

(6.129)

(6.130)

(6.131)

(6.132)

(6.133)

In an analogous manner one finally also finds that the dimensional form of the thermal-wind
relations (6.95) and (6.96) is
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∂u

∂z
= − g

f0

∂

∂ y

(
θ ′

θ

)

∂v

∂z
= g

f0

∂

∂x

(
θ ′

θ

)
(6.134)

(6.135)

where θ ′ = θ − θ is the deviation of potential temperature from that of the reference
atmosphere.

6.1.4 The Relationship with General Potential Vorticity

Closer inspection shows that the quasigeostrophic potential vorticity is not simply an appro-
ximation of Ertel’s potential vorticity

� = ωa

ρ
· ∇θ (6.136)

in the limit of synoptic scaling. Rather its conservation (in the absence of heating, friction,
and heat conduction) follows from scale-asymptotic analyses of the conservation equations
for general potential vorticity and potential temperature. Beyond this also the result from
the continuity equation finds application that to leading order the quasigeostrophic flow is
horizontal, which again is a consequence of the vanishing of its horizontal divergence. This
shall be demonstrated here.

First we decompose the absolute vorticity

ωa = ω + 2� (6.137)

via (3.29) and (4.97–4.99) into its spherical-coordinate components so that

� = ωaλ

ρ

1

r cosφ

∂θ

∂λ
+ ωaφ

ρ

1

r

∂θ

∂φ
+ ωar

ρ

∂θ

∂r
(6.138)

where

ωaλ = 1

r

∂w

∂φ
− 1

r

∂

∂r
(rv) (6.139)

ωaφ = 2� cosφ + 1

r

∂

∂r
(ru) − 1

r cosφ

∂w

∂λ
(6.140)

ωar = 2� sin φ + 1

r cosφ

∂v

∂λ
− 1

r cosφ

∂

∂φ
(cosφ u) (6.141)

By way of the scaling steps and results from Sects. 6.1.1 and 6.1.2 we now analyze the three
contributing terms. They are



196 6 Quasigeostrophic Dynamics of the Stratified Atmosphere

ωaλ

ρ

1

r cosφ

∂θ

∂λ
=

Ro2
L2

L2
d

θ

ρ

f0
H

1 + Ro
L2

L2
d

ρ̂
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a
ẑ
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cosφ

×
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a
ẑ

− 1
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a
ẑ
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= O
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θ

ρ

f0
H

)
= O

(
Ro3

θ

ρ

f0
H

)
(6.142)

ωaφ

ρ

1

r

∂θ

∂φ
=

Ro2
L2

L2
d

θ

ρ

f0
H
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ẑ

)

×
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û

]
− H2
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ẑ
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= O
(
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d

θ

ρ

f0
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)
= O

(
Ro3
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ρ

f0
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)
(6.143)

ωar

ρ

∂θ

∂r
=

θ

ρ

f0
H

1 + Ro
L2

L2
d

ρ̂

[(
1 + Ro

L2

L2
d

ρ̂

)
RoN̂ 2 + Ro

L2

L2
d

∂θ̂

∂ ẑ

]

×
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a
ẑ

[
1

cosφ

∂v̂

∂λ̂
− 1

cosφ

∂

∂φ̂

(
cosφû
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⎫⎪⎬
⎪⎭

= θ

ρ

f0
H

[
1 + O (

Ro2
)]

×
{
Ro f̂0 N̂

2 + Ro2
[
N̂ 2

(
β̂ ŷ + ∂v̂

∂ x̂
− ∂ û

∂ ŷ

)
+ L2/L2

d

Ro
f̂0

∂θ̂

∂ ẑ

]

+O (
Ro3

) }
(6.144)



6.1 Quasigeostrophic Theory and Its Potential Vorticity 197

so that potential vorticity takes the asymptotic form

� = θ

ρ

f0
H

{
Ro f̂0 N̂

2 + Ro2
[
N̂ 2

(
β̂ ŷ + ∂v̂

∂ x̂
− ∂ û

∂ ŷ

)
+ L2/L2

d

Ro
f̂0

∂θ̂

∂ ẑ

]
+ O (

Ro3
) }

(6.145)
In the application of the material derivative we use (6.46) and ŵ0 = 0 so that

D

Dt
= U

L

{
D0

Dt̂
+ Ro

[(
L/a

Ro
tan φ0 ŷ û0 + û1

)
∂

∂ x̂
+ v̂1

∂

∂ ŷ
+ ŵ1

∂

∂ ẑ

]
+ O (

Ro2
)}

(6.146)
and hence

0 = D�

Dt

= U

L

θ

ρ

f0
H

N̂ 2

×
{
Ro2

[
D0

Dt̂

(
∂v̂0

∂ x̂
− ∂ û0

∂ y
+ β̂ ŷ + f̂0

S

∂θ̂0

∂ ẑ

)
+ ρ

θ

ŵ1

N̂ 2

d

dẑ

(
f̂0

θ

ρ
N̂ 2

)]

+O (
Ro3

) }
(6.147)

Herein one has, due to (6.88) and (6.101),

ρ

θ

ŵ1

N̂ 2

d

dẑ

(
f̂0

θ

ρ
N̂ 2

)
= ρ

θ

ŵ1

S

d

dẑ

(
f̂0

θ

ρ
S

)
= f̂0

ŵ1

S

[
ρ
d

dẑ

(
S

ρ

)
+ O (Ro)

]
(6.148)

so that to leading order

0 = D0

Dt̂

(
ζ̂0 + β̂ ŷ + f̂0

S

∂θ̂0

∂ ẑ

)
+ f̂0ŵ1

ρ

S

d

dẑ

(
S

ρ

)
(6.149)

Now we use conservation of potential temperature in the adiabatic case Q̂ = 0. Inserting
the corresponding result (6.102) for ŵ1 leads to the conservation equation

0 = D0

Dt̂

[
ζ̂0 + β̂ ŷ + 1

ρ

∂

∂ ẑ

(
ρ

S
θ̂0

)]
(6.150)

which agrees with (6.106) in the case Q̂ = 0.
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6.1.5 Quasigeostrophic Theory in Pressure Coordinates

Beginning with the primitive equations we can use an analogous scale asymptotics as above
for deriving also in pressure coordinates a potential vorticity and its conservation equation.
Instead of this rather formal procedure, however, we choose here a heuristic approach. This
somewhat better illuminates how the various basic assumptions of quasigeostrophic theory
act together. For simplicity we right away begin with the primitive equations on the β-plane.

The two momentum equations are

Du

Dt
− ( f0 + β y)v = −∂�

∂x
(6.151)

Dv

Dt
+ ( f0 + β y)u = −∂�

∂ y
(6.152)

To leading order the Coriolis effect without β-term dominates in these together with the
pressure-gradient acceleration so that the horizontal wind is approximately in geostrophic
equilibrium:

u ≈ ug = − 1

f0

∂�g

∂ y

v ≈ vg = 1

f0

∂�g

∂x

(6.153)

(6.154)

Here we have decomposed the geopotential � = �(p) + �g + �a into the reference-
atmosphere part, and a fluctuating remainder that is dominated by a part �g participating
in the geostrophic equilibrium, and has an ageostrophic remainder �a . The geostrophic
horizontal wind thus also is non-divergent so that

∇ · ug = 0 (6.155)

We now decompose the wind into its dominant geostrophic part and the ageostrophic rest:

⎛
⎝ u

v

w

⎞
⎠ =

⎛
⎝ u

v

w

⎞
⎠

g

+
⎛
⎝ u

v

w

⎞
⎠

a

(6.156)

The continuity Eq. (3.92) is to leading order:

∇ · ug + ∂ωg

∂ p
= 0 (6.157)

Due to the non-divergence of the geostrophic wind one thus has

∂ωg

∂ p
= 0 (6.158)
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The upper boundary condition is ω (p → 0) = 0, or to leading order ωg (p → 0) = 0,
yielding

ωg = 0 (6.159)

With these estimates the material derivative becomes to leading order

D

Dt
= ∂

∂t
+ u · ∇ + ω

∂

∂ p
≈ Dg

Dt
= ∂

∂t
+ ug · ∇ (6.160)

Now we turn to the momentum equations (6.151) and (6.152), use there the horizontal-wind
decomposition (6.156) and the approximation (6.160) of the material derivative. Further
taking the geostrophic equilibrium (6.153–6.154) into account and neglecting β yua in com-
parison to β yug we obtain

Dgug
Dt

− f0va − β yvg = −∂�a

∂x
(6.161)

Dgvg

Dt
+ f0ua + β yug = −∂�a

∂ y
(6.162)

∂ (6.162)/∂x − ∂ (6.161)/∂ y yields the equation

Dg

Dt
(ζg + f ) = − f0∇ · ua (6.163)

for the quasigeostrophic vorticity

ζg = ∂vg

∂x
− ∂ug

∂ y
= 1

f0
∇2
h� (6.164)

The divergence of the ageostrophic wind can be obtained from the continuity equation. Due
to the non-divergence of the geostrophic wind and the vanishing of the geostrophic pressure
velocity the latter is

∇ · ua + ∂ωa

∂ p
= 0 (6.165)

so that the vorticity equation becomes

Dg

Dt
(ζg + f ) = f0

∂ωa

∂ p
(6.166)

In complete analogy to the procedure above in Sect. 6.1.2 we now use the entropy equation
(here without heating, friction, heat conduction) for an estimate of the contribution from
vortex-tube stretching on the right-hand side of the vorticity equation. As there we split
potential temperature into the contribution from the reference atmosphere and the rest, i.e.,

θ = θ (p) + θ ′ (6.167)
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and thus approximate the entropy equation as

Dgθ
′

Dt
+ ωa

dθ

dp
= 0 (6.168)

This way we have

ωa = − 1

dθ/dp

Dgθ
′

Dt
(6.169)

Due to the hydrostatic equilibrium (3.91), the equation of state (2.3) and the definition (2.91)
of potential temperature one has

θ = − p

R

(
p00
p

) R
cp ∂�

∂ p
(6.170)

Also the geopotential is split as

� = � (p) + �g + �a (6.171)

so that one finds

θ = − p

R

(
p00
p

) R
cp ∂�

∂ p
(6.172)

θ ′ ≈ − p

R

(
p00
p

) R
cp ∂�g

∂ p
(6.173)

Since, however, (p00/p)R/cp = θ/T , where T (p) is the reference-atmosphere temperature,
one obtains after again using the equation of state

θ ′ = −ρθ
∂�g

∂ p
(6.174)

Here ρ(p) is the reference-atmosphere density. Finally, the pressure velocity (6.169) beco-
mes

ω = ωa = Dg

Dt

(
ρθ

dθ/dp

∂�g

∂ p

)
(6.175)

Thiswe now insert into the vorticity equation (6.166), leading us to the conservation equation
for quasigeostrophic potential vorticity. First one obtains

Dg

Dt
(ζg + f ) = ∂

∂ p

Dg

Dt

(
f0

ρθ

dθ/dp

∂�g

∂ p

)
(6.176)
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The pressure derivative of the geostrophic wind (6.153–6.154) leads us to the relationships

∂ug
∂ p

= − 1

f0

∂2�g

∂ p∂ y
(6.177)

∂vg

∂ p
= 1

f0

∂2�g

∂ p∂x
(6.178)

by the help of which (6.176) is simplified to become

Dg

Dt
(ζg + f ) = Dg

Dt

∂

∂ p

(
f0

ρθ

dθ/dp

∂�g

∂ p

)
(6.179)

Now we define the streamfunction

ψ = �g

f0
(6.180)

and the stability parameter

σ = − 1

ρθ

dθ

dp
(6.181)

and finally obtain the desired conservation equation

Dgπ

Dt
= 0 π = ∇2

hψ + f + ∂

∂ p

(
f 20
σ

∂ψ

∂ p

)
(6.182)

with
Dg

Dt
= ∂

∂t
− ∂ψ

∂ y

∂

∂x
+ ∂ψ

∂x

∂

∂ y
(6.183)

Note again that it holds in the absence of friction, heating, and heat conduction. A corre-
sponding extension, however, is possible. A characteristic value for the stability parameter
in midlatitudes is σ = 2 ·10−6 m2/Pa2s2. Note also that (6.177) and (6.178) can be rewritten
as the thermal-wind relationships

∂ug
∂ p

= 1

f0ρ

∂

∂ y

(
θ ′

θ

)

∂vg

∂ p
= − 1

f0ρ

∂

∂x

(
θ ′

θ

)
(6.184)

(6.185)
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6.1.6 A Quasigeostrophic Two-Layer Model

The vertical structure of important synoptic-scale processes is simple enough so that it may
often suffice to consider the atmosphere in the approximation of two layers. The correspon-
ding equations will be derived here, where we limit ourselves directly to the geometry of
the β-plane. Starting point is the vorticity equation (6.166) which we here write

Dg

Dt

(
ζg + f

) = f0
∂ω

∂ p
(6.186)

and the entropy equation (6.168) which we express via (6.174) and (6.180) in the form

Dg

Dt

∂ψ

∂ p
+ σ

f0
ω = 0 (6.187)

For a representation of the dynamics we now pick two pressure layers as in Fig. 6.1.
Streamfunction and horizontal winds are defined on the two main levels 1 and 2, while the
pressure velocity is defined on the side and intermediate levels at the top (t) and bottom (b)
boundary and between the two layers (m). On the latter we also define potential temperature.
For a discretization we now approximate the vertical derivatives by finite differences. Thus
one approximates (6.186) on the upper level at p = p1 as

Dg

Dt

(∇2
hψ1 + f

) = f0
ωm − ωt

pm − pt
(6.188)

where the quasigeostrophic material derivative of an arbitrary field A in this layer is defined
as

Dg A

Dt
= ∂A

∂t
+ J (ψ1, A) (6.189)

The Jacobi operator applied to arbitrary fields B and C is

pt = 0

p1 = 250 mb

pm = 500 mb

p2 = 750 mb

pb = 1000 mb

Fig. 6.1 The vertical discretization of a two-layer model
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J (B,C) = ∂B

∂x

∂C

∂ y
− ∂B

∂ y

∂C

∂x
(6.190)

It has the following useful properties:

J (A + B,C) = J (A,C) + J (B,C) (6.191)

J (αA, βB) = αβ J (A, B) (6.192)

J (A, B) = −J (B, A) (6.193)

J (A, A) = 0 (6.194)

where α and β are constant factors. Furthermore as before the upper boundary condition for
the pressure velocity is ωt = 0, and we define

pm − pt = pb − pm = �p (6.195)

so that (6.188) can also be written as

∂∇2
hψ1

∂t
+ J

(
ψ1, ∇2

hψ1 + f
) = f0

�p
ωm (6.196)

The procedure for the lower level at p = p2 is analogous. There we also neglect the effects
of friction and orography so that ωb = 0, thus yielding

∂∇2
hψ2

∂t
+ J

(
ψ2, ∇2

hψ2 + f
) = − f0

�p
ωm (6.197)

Finallywediscretize for the elimination of the pressure velocityωm also the quasigeostrophic
entropy equation (6.187) on the intermediate level at p = pm . For this purpose we appro-
ximate the geostrophic horizontal winds and the streamfunction there by the corresponding
arithmetic mean between the two full levels. One obtains

∂

∂t

(
ψ2 − ψ1

�p

)
+ J

(
ψ1 + ψ2

2
,
ψ2 − ψ1

�p

)
+ σ

f0
ωm = 0 (6.198)

Now, however,
ψ1 + ψ2

2
= ψ1 + ψ2 − ψ1

2
= ψ2 − ψ2 − ψ1

2
(6.199)

so that we can derive via (6.191–6.194) from (6.198) the two identities

ωm = − ∂

∂t

[
f0

σ�p
(ψ2 − ψ1)

]
− J

[
ψ1,

f0
σ�p

(ψ2 − ψ1)

]
(6.200)

ωm = − ∂

∂t

[
f0

σ�p
(ψ2 − ψ1)

]
− J

[
ψ2,

f0
σ�p

(ψ2 − ψ1)

]
(6.201)
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Inserting (6.200) into (6.196), and (6.201) into (6.197), finally yield the two conservation
equations

0 = ∂πi

∂t
+ J (ψi , πi ) π1,2 = ∇2

hψ1 + f ± F(ψ2 − ψ1) (6.202)

where we have

F = f 20
σ�p2

(6.203)

π1 and π2 are, respectively, the potential vorticity in the upper and lower layer. For later
reference we also note that the contribution ±F (ψ1 − ψ2) results from the elimination of
ωm , and thus effectively from the vortex-tube stretching.

6.1.7 Summary

In the stratified atmosphere with variable density and altitude-dependent horizontal winds a
comparatively closed treatment of dynamic phenomena on the synoptic scale can be achieved
within the framework of quasigeostrophic theory.

• For this purpose pressure and density are decomposed into a hydrostatic reference part
and small deviations.

• An analysis of the continuity equation shows that the ratio between the vertical and
horizontal-wind scales cannot be larger than the ratio between the vertical and horizontal
length scales.

• The scale of the pressure fluctuations follows, under the assumption of small Rossby
numbers, directly from the horizontal-momentum equation, where the pressure gradient
must be balanced by the Coriolis force.

• Since the horizontal scale is smaller than the earth’s radius by a factor of the order of
the Rossby number one can use again the approximation of the tangential β-plane.

• The ratios between vertical scale and horizontal scale or earth’s radius are also small,
more precisely they are of order Ro2 and Ro3. Finally we also assume that the squares of
the horizontal scale and the external Rossby deformation radius have a ratio of O(Ro).
This last assumption differs from quasigeostrophic shallow-water theory.

• The scale of the density fluctuations follows under the same assumptions from the vertical
momentum equation, where the vertical pressure gradient must balance gravity.

• A Rossby-number expansion of all dynamic fields yields the following leading-order
results:
– The horizontal wind is in geostrophic balance. The pressure fluctuations act as stre-

amfunction.
– The fluctuations of pressure and density are in hydrostatic equilibrium.
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– The vertical wind vanishes to leading order. This means that the scale estimate above
for the vertical wind must be corrected by a Rossby-number factor.

• The resulting quasigeostrophic vorticity equation contains vortex-tube stretching. The
vertical wind there must be determined from the entropy equation. The analysis of the
latter and of potential temperature yields:
– The vertical gradient of reference-potential temperature is sufficiently weak so that

the potential-temperature fluctuations are of the order Ro2.
– Therefore they can be determined directly from the vertical gradient of the pressure

fluctuations, which also leads to thermal-wind balance.
– The vertical wind can be determined via the entropy equation from stability, heat

sources and the geostrophic material derivative of the potential-temperature fluctua-
tions.

• Inserting this vertical wind into the vorticity equation yields the conservation equation
for quasigeostrophic potential vorticity. The latter can be determined, as all dynamic
fields, from the streamfunction, i.e., the pressure fluctuations!

• Stability can be written as S = L2
di/L

2, where Ldi is the important internal Rossby
deformation radius.

• Similar to shallow-water theory the quasigeostrophic potential-vorticity-conservation
equation can as well be derived directly from its general analogue, however under addi-
tional application of entropy equation. Quasigeostrophic potential vorticity is not simply
an approximation of general potential vorticity under synoptic scaling.

• A heuristic derivation of quasigeostrophic theory in pressure coordinates illustrates the
main steps further.

• Moreover, the formulation in pressure coordinates forms the starting point for the deri-
vation of a quasigeostrophic two-layer model, reducing the dynamics in the vertical, via
discretization, onto two pressure layers.

6.2 Quasigeostrophic Energetics of the Stratified Atmosphere

Energy conservation is a fundamental property both of the general equations of motion and
of the primitive equations. Obviously, in the absence of friction, heating and heat conduction
quasigeostrophic dynamics should have a corresponding property as well, and this section
demonstrates that this is indeed the case. It also shows that energy can be exchanged between
kinetic and available potential energy, the latter to be defined below, and how this can happen.
For this we first consider the dynamics of the continuously stratified atmosphere and then
that of the two-layer model. In both cases we neglect effects of friction, heating, and heat
conduction. For simplicity we use the boundary conditions of the β-channel. The results
also hold, however, in the case of periodic boundary conditions in both horizontal directions,
or in the case of solid-wall boundary conditions in all horizontal directions.
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6.2.1 The Continuously Stratified Atmosphere

A common variant of β-plane dynamics, for the approximation of extratropical processes,
uses the boundary conditions of a zonal channel (β-channel), spanning the globe parallel to
a latitude circle. The model volume thus is

0 ≤ x ≤ Lx

0 ≤ y ≤ Ly

0 ≤ z < ∞

It makes sense to assume Lx = 2πa cosφ0. The meridional extent is specified less clearly.
One can assume, e.g., Ly = aπ/2.

The Boundary Conditions
Corresponding to the picture above the boundary conditions are as follows:

• In x we assume periodicity, i.e.,

ψ(x) = ψ(x + Lx ) (6.204)

• The meridional boundaries are solid and impermeable so that the meridional wind vanis-
hes there, i.e.

v(y = 0) = v(y = Ly) = 0 (6.205)

This must also hold for the geostrophic part so that

∂ψ

∂x

∣∣∣∣
y = 0,Ly

= 0 (6.206)

Thus the streamfunction at the meridional boundaries is zonally symmetric.
• The lower boundary is solid as well. The vertical wind vanishes there, i.e., w(z = 0) =

0. At zero heating this also means, due to (6.130), that the quasigeostrophic material
derivative of the vertical streamfunction gradient vanishes, thus

Dg

Dt

∂ψ

∂z

∣∣∣∣
z=0

= 0 (6.207)

• Density vanishes at infinity:
ρ(z → ∞) = 0 (6.208)

• Via the zonal-momentum equation a further relationship at the meridional boundaries
(y = 0, Ly) results from the zonal andmeridional boundary conditions. After subtraction
of the geostrophic equilibrium the former is on the β-plane
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∂ug
∂t

+ ug
∂ug
∂x

+ vg
∂ug
∂ y

− f0va − β yvg = − 1

ρ

∂ pa
∂x

(6.209)

Here pa is the (ageostrophic) pressure atO(Ro), that is not in leading-order geostrophic
equilibrium with the geostrophic wind. Alternatively this relationship can be obtained by
redimensionalization of (6.67), with a correspondingly generalized ageostrophic pres-
sure. Anyway, at the meridional boundaries one has vg = va = 0, so that

∂ug
∂t

+ ∂

∂x

(
u2g
2

)
= − 1

ρ

∂ pa
∂x

(6.210)

Integration in x finally yields, due to zonal periodicity of streamfunction and ageostrophic
pressure,

∂

∂t

Lx∫
0

dx ug = − ∂

∂t

Lx∫
0

dx
∂ψ

∂ y
= 0

(
y = 0, Ly

)
(6.211)

The Conservation Law
With the boundary conditions above one obtains the energy conservation law as follows. We
multiply the conservation equation (6.119) for quasigeostrophic potential vorticity (without
heating) by −ρψ and integrate over the total volume of the β-channel:

−
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρψ

(
∂

∂t
+ ug · ∇

)[
∇2
hψ + f + 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)]
= 0 (6.212)

For further progress we first consider for arbitrary fields F

Ly∫
0

dy

Lx∫
0

dx ψug · ∇F =
Ly∫
0

dy

Lx∫
0

dx ψ J (ψ, F)

=
Ly∫
0

dy

Lx∫
0

dx

(
−ψ

∂ψ

∂ y

∂F

∂x
+ ψ

∂ψ

∂x

∂F

∂ y

)

=
Ly∫
0

dy

[
−ψ

∂ψ

∂ y
F

]Lx

0
+

Lx∫
0

dx

[
ψ

∂ψ

∂x
F

]Ly

0
(6.213)
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Herefore we have integrated in the last step twice by parts. Due to the periodicity in x ,
however, the first term vanishes, and due to the impermeability of the meridional boundaries
also the second. One thus has

Ly∫
0

dy

Lx∫
0

dx ψug · ∇F = 0 (6.214)

and (6.212) is simplified, via ∂ f /∂t = 0, to

0 = −
∞∫
0

dz ρ

Ly∫
0

dy

Lx∫
0

dx ψ
∂

∂t

[
∇2
hψ + 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)]
(6.215)

Here we again have, using partial integration,

−
Ly∫
0

dy

Lx∫
0

dx ψ
∂

∂t
∇2
hψ = −

Ly∫
0

dy

[
ψ

∂

∂t

∂ψ

∂x

]Lx

0
+

Ly∫
0

dy

Lx∫
0

dx
∂ψ

∂x

∂

∂t

∂ψ

∂x

−
Lx∫
0

dx

[
ψ

∂

∂t

∂ψ

∂ y

]Ly

0
+

Ly∫
0

dy

Lx∫
0

dx
∂ψ

∂ y

∂

∂t

∂ψ

∂ y
(6.216)

The first term vanishes due to periodicity in x , as does the third, using (6.206) and (6.211).
One thus has

−
Ly∫
0

dy

Lx∫
0

dx ψ
∂

∂t
∇2
hψ =

Ly∫
0

dy

Lx∫
0

dx
∂

∂t

[
1

2

(
∂ψ

∂x

)2

+ 1

2

(
∂ψ

∂ y

)2
]

(6.217)

Via partial integration in z one finally obtains

−
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρψ
∂

∂t

[
1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)]

= −
Ly∫
0

dy

Lx∫
0

dx

[
ψ

∂

∂t

(
ρ

f 20
N 2

∂ψ

∂z

)]∞

0

+
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx
∂ψ

∂z

∂

∂t

(
ρ

f 20
N 2

∂ψ

∂z

)
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Here the first term is

−
Ly∫
0

dy

Lx∫
0

dx

[
ψ

∂

∂t

(
ρ

f 20
N 2

∂ψ

∂z

)]∞

0

= −
Ly∫
0

dy

Lx∫
0

dx ρ
f 20
N 2ψ

∂

∂t

∂ψ

∂z

∣∣∣∣
z=0

= −ρ
f 20
N 2

Ly∫
0

dy

Lx∫
0

dx ψ

(
∂

∂t
+ ug · ∇

)
∂ψ

∂z

∣∣∣∣
z=0

= 0 (6.218)

where we have used ρ(z → ∞) = 0, (6.214) and finally also (6.207). Thus

−
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρψ
∂

∂t

[
1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)]

=
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
f 20
N 2

∂

∂t

[
1

2

(
∂ψ

∂z

)2
]

(6.219)

In summary, one obtains from (6.215) the conservation law

0 = dE

dt
E = K + A (6.220)

with

K =
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
1

2

[(
∂ψ

∂x

)2

+
(

∂ψ

∂ y

)2
]

=
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
1

2

[
u2g + v2g

]

A =
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
f 20
N 2

1

2

(
∂ψ

∂z

)2

=
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
g2

N 2

1

2

(
θ ′

θ

)2

(6.221)

(6.222)
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Here the conserved total energy E consists of the kinetic energy K and the available potential
energy A. The latter rests in the potential-temperature fluctuations of the flow. Since, due to
(6.112),

K =
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
U 2 L2

L2

1

2

[(
∂ψ

∂ x̂

)2

+
(

∂ψ

∂ ŷ

)2
]

(6.223)

and, due to (6.118)

A =
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
H2

L2
di

1

2

(
∂ψ

∂z

)2

=
∞∫
0

dz

Ly∫
0

dy

Lx∫
0

dx ρ
U 2 L2

L2
di

1

2

(
∂ψ

∂ ẑ

)2

(6.224)

the energy densities of structures with horizontal length scale L are in the ratio

K

A
= O

(
L2
di

L2

)
= O(1) (6.225)

Large-scale structures thus have more available potential energy than kinetic energy.

The Exchange Rate Between Available Potential Energy and Kinetic Energy
It is essential to understand how kinetic and available potential energy are transformed into
each other, while total energy is conserved. For the determination of the corresponding
exchange rate one needs on the one hand the quasigeostrophic vorticity equation which can
be obtained by redimensionalization from (6.75):

Dg

Dt

(∇2
hψ + f

) = f0
ρ

∂

∂z
(ρw) (6.226)

On the other hand we need the adiabatic variant of the quasigeostrophic entropy equation,
obtained by redimensionalization from (6.100) with Q̂ = 0:

Dg

Dt

(
f0

∂ψ

∂z

)
+ wN 2 = 0 (6.227)

Multiplying (6.226) by −ψρ, and (6.227) by ρ( f0/N 2)∂ψ/∂z, and integrating both over
the volume of the β-channel yields

dK

dt
=

∫
V
dV ρ f0w

∂ψ

∂z
d A

dt
= −

∫
V
dV ρ f0w

∂ψ

∂z

(6.228)

(6.229)
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Since θ ′ ∝ ∂ψ/∂z, available potential energy is transformed into kinetic energy if on average
wθ ′ > 0. Thus kinetic energy is produced at the cost of available potential energy if either
cold air sinks or warm air rises.

6.2.2 TheTwo-Layer Model

The quasigeostrophic two-layermodel satisfies energy conservation in amanner very similar
to that of the continuously stratified atmosphere, shown above. Beyond this one can also
recognize in its context the transformation of baroclinic kinetic energy into barotropic kinetic
energy, a process of relevance in the late development of extratropical weather systems.
Again we assume in the horizontal the boundary conditions of the β-channel. Moreover,
already in the derivation of the equations of the two-layer model we have assumed that
ωb = ωt = 0.

The Conservation Law
For a derivation of energy conservationwe respectivelymultiply the two equations in (6.202)
by the negative of the corresponding streamfunction, take the sum, and integrate the result
over the total area of the β-channel, i.e., we form

−
2∑

i=1

∫ Ly

0
dy

∫ Lx

0
dx ψi

[
∂πi

∂t
+ J (ψi , πi )

]
= 0 (6.230)

By steps completely analogous to the ones in the previous chapter we obtain the conservation
equation

dE

dt
= 0 (6.231)

for the total energy
E = K + A (6.232)

consisting of the kinetic energy

K = 1

2

∫ Ly

0
dy

∫ Lx

0
dx (∇hψ1 · ∇hψ1 + ∇hψ2 · ∇hψ2) (6.233)

with the horizontal streamfunction gradient

∇hψi = ∂ψi

∂x
ex + ∂ψi

∂ y
ey (6.234)
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and of the available potential energy

A = 1

2

∫ Ly

0
dy

∫ Lx

0
dx

κ2

2
(ψ1 − ψ2)

2 (6.235)

Here we have
κ = √

2F (6.236)

It has the dimension of a wave-number, and the corresponding wavelength is in midlatitudes
of the order 2π/κ ≈ 3000km. Introducing the barotropic streamfunction

ψ = ψ1 + ψ2

2
(6.237)

and the baroclinic streamfunction

τ = ψ1 − ψ2

2
(6.238)

so that
ψ1,2 = ψ ± τ (6.239)

one finally obtains
dE

dt
= 0 E = K + A (6.240)

with

K =
∫ Ly

0
dy

∫ Lx

0
dx (∇hψ · ∇hψ + ∇hτ · ∇hτ)

A =
∫ Ly

0
dy

∫ Lx

0
dx κ2τ 2

(6.241)

(6.242)

The Exchange Rates
The kinetic energy has barotropic and baroclinic parts. In the following we examine the
exchange between the two, and between kinetic and available potential energy. For this we
somewhat rewrite the basic equations. The mean [(6.196) + (6.197)]/2 of the two vorticity
equations yields

∂

∂t
∇2
hψ + J (ψ, ∇2

hψ + f ) = −J (τ, ∇2
hτ) (6.243)

while one obtains from the difference [(6.196) − (6.197)]/2
∂

∂t
∇2
hτ + J (τ, f ) = −J (τ, ∇2

hψ) − J (ψ, ∇2
hτ) + f0

�p
ωm (6.244)
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Moreover, the entropy equation (6.198) can be written as

∂τ

∂t
+ J (ψ, τ) = σ�p

2 f0
ωm (6.245)

We then obtain the desired exchange rates as follows: Multiplication of (6.243) by−2ψ and
integration over the area of the β-channel yields

d

dt

∫ Ly

0
dy

∫ Lx

0
dx ∇hψ · ∇hψ = 2

∫ Ly

0
dy

∫ Lx

0
dx ψ J (τ, ∇2

hτ) (6.246)

while multiplication of (6.244) by −2τ and the corresponding integration gives

d

dt

∫ Ly

0
dy

∫ Lx

0
dx ∇hτ · ∇hτ

= −2
∫ Ly

0
dy

∫ Lx

0
dx ψ J (τ, ∇2

hτ ) − 2 f0
�p

∫ Ly

0
dy

∫ Lx

0
dx τωm (6.247)

Here we have used
∫ Ly

0
dy

∫ Lx

0
dx τ J (ψ, ∇2

hτ ) = −
∫ Ly

0
dy

∫ Lx

0
dx ψ J (τ, ∇2

hτ) (6.248)

which can easily be verified using the boundary conditions. Finally one obtains, integrating
−2κ (6.245),

d

dt

∫ Ly

0
dy

∫ Lx

0
dx κ2τ 2 = 2 f0

�p

∫ Ly

0
dy

∫ Lx

0
dx τωm (6.249)

In total one thus finds that

CK
ψτ = 2

∫ Ly

0
dy

∫ Lx

0
dx ψ J (τ, ∇2

hτ) (6.250)

describes the transformation of baroclinic kinetic energy into barotropic kinetic energy,
while

CAK = −2 f0
�p

∫ Ly

0
dy

∫ Lx

0
dx τωm (6.251)

describes the transformation of available potential energy into baroclinic kinetic energy. The
last process we have already met in the continuously stratified case. Since, due to (6.174),
(6.180), and (6.238) the potential temperature in the intermediate layer at p = pm is

θ ′
m = 2 f0

(
ρθ

)
p= pm

τ (6.252)

one finds that CAK > 0 if θ ′
mωm < 0, thus again if colds air sinks or warm air rises.
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6.2.3 Summary

A fundamental property of quasigeostropic theory is that, beyond the material conservation
of its potential vorticity, it also conserves its form of total energy.

• In the absence of friction, heat conduction, and heat sources or sinks the sum of kinetic and
available potential energy is conserved. The latter is contained in potential-temperature
fluctuations.

• Available potential energy can be transformed into kinetic energy if warm air rises and
cold air sinks.

• In addition, the two-layermodel demonstrates the process of exchange between baroclinic
kinetic energy and barotropic kinetic energy.

• These theorems have been shown for β-channel geometry. They hold, however, also for
other geometries.

6.3 RossbyWaves in the Stratified Atmosphere

Just as the linearized quasigeostrophic dynamics of the shallow-water equations yields free
wave solutions, the stratified atmosphere does so too.As, e.g., in Fig. 6.2 suchwave structures
are always prominent in atmospheric data. These Rossby waves shall here be discussed in
the two-layer-model approximation, followed by a treatment of the continuously stratified
case. Effects of friction and orography are neglected. As boundary conditions we use those
of the β-channel.

6.3.1 RossbyWaves in the Two-Layer Model

As easily verified, the two-layer-model equations (6.202) are satisfied by an altitude-
independent zonal flow

ψ1 = ψ2 = −Uy (6.253)

The perturbation ansatz
ψi = −Uy + ψ ′

i (6.254)

yields, neglecting all nonlinear terms in the infinitesimally small ψ ′
i ,

(
∂

∂t
+U

∂

∂x

) [∇2
hψ

′
1 + F(ψ ′

2 − ψ ′
1)

] + β
∂ψ ′

1

∂x
= 0 (6.255)

(
∂

∂t
+U

∂

∂x

) [∇2
hψ

′
2 + F(ψ ′

1 − ψ ′
2)

] + β
∂ψ ′

2

∂x
= 0 (6.256)
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temperature at 1000 hPa (C)
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Fig. 6.2 Snapshot of geopotential (contours) and temperature (color shading) at 1000mb. Note the
clearwave structures in the geopotential. Copyright©2021EuropeanCenter forMedium-RangeWea-
ther Forecasts (ECMWF). Sourcewww.ecmwf.int. This data is published under a Creative Commons
Attribution 4.0 International (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/. ECMWF
does not accept any liability whatsoever for any error or omission in the data, their availability, or for
any loss or damage arising from their use

Again we decompose into

ψ ′ = 1

2
(ψ ′

1 + ψ ′
2) (6.257)

τ ′ = 1

2
(ψ ′

1 − ψ ′
2) (6.258)

so that
ψ ′
1,2 = ψ ′ ± τ ′ (6.259)

and form [(6.255)+ (6.256)]/2, with the result
(

∂

∂t
+U

∂

∂x

)
∇2
hψ

′ + β
∂ψ ′

∂x
= 0 (6.260)

This is the equation for the barotropic mode. The one for the baroclinic mode is obtained
from [(6.255)− (6.256)]/2 as

(
∂

∂t
+U

∂

∂x

) (∇2
hτ

′ − κ2τ ′) + β
∂τ ′

∂x
= 0 (6.261)

Obviously in the linear limit the two modes are completely decoupled.

www.ecmwf.int
https://creativecommons.org/licenses/by/4.0/
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Since the coefficients of their respective prognostic equations do not have any spatial or
temporal dependence, a solution via Fourier ansatz seems possible. As sketched inAppendix
11.5.2, both of the two streamfunctions can be expressed, due to their periodicity in x , as
Fourier series,

ψ ′
i (x, y, t) =

∞∑
n=−∞

ψn
i (y, t) eiknx ; kn = n

2π

Lx
(6.262)

The meridional boundary conditions are

v′
i = ∂ψ ′

i

∂x
= 0

(
y = 0, Ly

)
(6.263)

One thus has for all n
iknψ

n
i = 0

(
y = 0, Ly

)
(6.264)

Hence for all n �= 0
ψn
i = 0

(
y = 0, Ly

)
(n �= 0) (6.265)

Following Appendix 11.5.2 one can then write

ψn
i (y, t) =

∞∑
m = 1

ψnm
i (t) sin(lm y) lm = m

π

Ly
(n �= 0) (6.266)

As shown in appendix F one can derive for the zonally symmetric part n = 0 via (6.211)

ψ0
i (y, t) = D0

i (y) +
∞∑

m = 1

ψ0m
i (t) cos (lm y) (6.267)

where D0
i is a quadratic polynomial in y. Hence

ψ ′
i (x, y, t) = D0

i (y)

+
∞∑

n = −∞

∞∑
m = 1

ψnm
i (t) [δn0 cos(lm y) + (1 − δn0) sin(lm y)] e

iknx (6.268)

so that

ψ ′ (x, y, t) = D0
ψ(y)

+
∞∑

n = −∞

∞∑
m = 1

ψnm(t) [δn0 cos(lm y) + (1 − δn0) sin(lm y)] e
iknx (6.269)

τ ′ (x, y, t) = D0
τ (y)

+
∞∑

n = −∞

∞∑
m = 1

τ nm(t) [δn0 cos(lm y) + (1 − δn0) sin(lm y)] e
iknx (6.270)
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where

ψnm = (
ψnm
1 + ψnm

2

)
/2 (6.271)

τ nm = (
ψnm
1 − ψnm

2

)
/2 (6.272)

D0
ψ = (

D0
1 + D0

2

)
/2 (6.273)

D0
τ = (

D0
1 − D0

2

)
/2 (6.274)

Finally we express all ψnm and τ nm as Fourier integrals in time so that

ψ ′ (x, y, t) = D0
ψ(y)

+
∞∑

n = −∞

∞∑
m = 1

∞∫
−∞

dω ψnmω [δn0 cos(lm y) + (1 − δn0) sin(lm y)] e
i(knx−ωt)

(6.275)

τ ′ (x, y, t) = D0
τ (y)

+
∞∑

n = −∞

∞∑
m = 1

∞∫
−∞

dω τ nmω [δn0 cos(lm y) + (1 − δn0) sin(lm y)] e
i(knx−ωt)

(6.276)

We first discuss the barotropic mode. (6.275) inserted into (6.260) yields

0 =
∞∑

n = −∞

∞∑
m = 1

∞∫
−∞

dω ei(knx−ωt)ψnmω

× {
δn0ω cos(lm y) − (1 − δn0)

[
(ω − knU )

(
k2n + l2n

) + knβ
]
sin(lm y)

}
(6.277)

Therefore, with k0 = 0, nontrivial solutions ψnmω �= 0 require fulfillment of the dispersion
relation

ω = ωψ(kn, lm) = knU − βkn
kn2 + lm2 (6.278)

for barotropic Rossby waves. Hence one has

ψnmω = �nmδ
[
ω − ωψ(kn, lm)

]
(6.279)

with (nearly) free complex �nm . Inserting these results into (6.275) leads to

ψ ′ (x, y, t) = [
D0
1(y) + D0

2(y)
]
/2

+
∞∑

n = −∞

∞∑
m = 1

�nmei[knx−ωψ(kn ,lm )t] [δn0 cos(lm y) + (1 − δn0) sin(lm y)]

(6.280)
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Sinceψ ′ is real, andωψ(−kn, lm) = −ωψ(kn, lm), onemust have�nm∗ = �−nm and hence
with the decomposition �nm = |�nm |eiαnm into amplitude and phase, and �0m ∈ R,

ψ ′ (x, y, t) = [
D0
1(y) + D0

2(y)
]
/2 +

∞∑
m = 1

�0m cos(lm y)

+2
∞∑

n = 1

∞∑
m = 1

|�nm | sin(lm y) cos[knx − ωψ(kn, lm)t + αnm] (6.281)

Herein the zonally symmetric part is steady, while the longitude dependent part consists of
Rossby waves, each propagating with a phase velocity

cnm = ωψ(kn, lm)

kn
= U − β

k2n + l2m
(6.282)

in zonal direction.With respect to the basic flow theymovewestwards. Their spatial structure
is of interest as well. At the specific time t when ωψ(kn, lm)t − αnm = π/2 it is of the form
sin(lm y) sin(knx), illustrated for a few examples in Fig. 6.3. One recognizes the typical
sequences of pressure highs and lows characteristic for synoptic-scale weather systems in
midlatitudes.
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Fig. 6.3 Horizontal structure of various barotropic Rossby waves, with zonal wavenumber kn and
meridional wavenumber lm , at time t = (π/2 + αnm)/ωψ(kn, lm)
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The dynamics at the base of the westward propagation can be understood be noting that,
due to the vanishing baroclinic streamfunction τ ′ = 0 the streamfunction in both layers is
identical to the barotropic streamfunction, i.e.,

ψ ′
1 = ψ ′

2 = ψ ′ (6.283)

Hence (6.260) corresponds layer-wise to

(
∂

∂t
+U

∂

∂x

)
∇2
hψ

′
i + β

∂ψ ′
i

∂x
= 0 (i = 1, 2) (6.284)

which is each the linearization of

D

Dt
(ζi + f ) = 0 (6.285)

Therefore, barotropic Rossby waves conserve their absolute vorticity, which leads to west-
ward propagation by the samemechanism as already discussed for short-wave shallow-water
Rossby waves.

The calculations for the baroclinic mode are completely analogous. Use of (6.276) in
(6.261) leads to the dispersion relation

ω = ωτ (kn, lm) = knU − βkn
kn2 + lm2 + κ2

(6.286)

of baroclinic Rossby waves. These as well have a westward directed phase velocity with
respect to the basic flow. Their structure is given by

τ ′ (x, y, t) = [
D0
1(y) − D0

2(y)
]
/2 +

∞∑
m = 1

T 0m cos(lm y)

+2
∞∑

n = 1

∞∑
m = 1

|T nm | sin(lm y) cos[knx − ωτ (kn, lm)t + βnm] (6.287)

with real T 0m and otherwise free T nm with corresponding phase βnm .
Their barotropic streamfunction is ψ ′ = 0 so that the streamfunctions in the two layers

are in opposite phase, i.e.,
ψ ′
1 = −ψ ′

2 = τ ′ (6.288)

In the case of short baroclinic Rossby waves, for Knm
2 = kn2+ lm2 >> κ2, one can neglect

in (6.261) κ2τ ′ in comparison with ∇2
hτ

′ so that approximately

(
∂

∂t
+U

∂

∂x

)
∇2
hτ

′ + β
∂τ ′

∂x
= 0 (6.289)
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Hence (6.284) holds layer-wise, so that the westward propagation is caused again by the
conservation of absolute vorticity.

In the case of long baroclinic Rossby waves with Knm
2 � κ2 the corresponding appro-

ximation is

−
(

∂

∂t
+U

∂

∂x

)
κ2τ ′ + β

∂τ ′

∂x
= 0 (6.290)

Due to (6.288) the corresponding prognostic equations in the two layers are

(
∂

∂t
+U

∂

∂x

)
F

(
ψ ′
2 − ψ ′

1

) + β
∂ψ ′

1

∂x
= 0 (6.291)

(
∂

∂t
+U

∂

∂x

)
F

(
ψ ′
1 − ψ ′

2

) + β
∂ψ ′

2

∂x
= 0 (6.292)

This is the linear approximation of

D

Dt

[
F

(
ψ ′
2 − ψ ′

1

) + f
] = 0 (6.293)

D

Dt

[
F

(
ψ ′
1 − ψ ′

2

) + f
] = 0 (6.294)

These waves are therefore characterized by a balance between vortex-tube stretching and
planetary-vorticity advection. For an illustration we consider the situation in Fig. 6.4 where

westward propagation of the anomaly

L

H

f ↓ → ψ1 – ψ2 ↑

ϕ1
'

ϕ2
'

f ↑ → ψ1 – ψ2 ↓

ϕ1
' – ϕ2

'

Δp
ϑ' = –ρsϑs > 0

∂ϕ'

∂p
≈ ρsϑs

Fig. 6.4 Dynamics of a positive potential-temperature anomaly in a long-wave baroclinic Rossby
wave
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we see a positive anomaly of the shear streamfunction, equivalent to a positive potential-
temperature anomaly. The upper-layer anomaly of geopotential and streamfunction is also
positive (high-pressure anomaly), while the lower-layer anomaly is negative (low-pressure
anomaly). Correspondingly the upper-layer geostrophic wind on the western flank is direc-
ted northward, while it is southward on the eastern flank. This corresponds to an increase
(decrease) of planetary vorticity on the western (eastern) flank. Therefore the geopoten-
tial anomaly must increase (decrease) on the western (eastern) flank. In the lower layer
conditions are opposite. The potential-temperature anomaly thus moves westwards, just as
described by the dispersion relation.

6.3.2 RossbyWaves in an Isothermal Continuously Stratified
Atmosphere

A continuously stratified case where Rossby waves can be treated comparatively easily is
the one of a reference atmosphere with constant temperature T . It has a constant scale height
H = RT /g so that pressure and density have the exponential profiles

p(z) = p0e
−z/H (6.295)

ρ(z) = p

RT
(6.296)

with fixed reference surface pressure p0. Its potential temperature then is

θ(z) = T

(
p00
p0

)R/cp
e

R
cp

z
H (6.297)

so that

N 2 = g

θ

dθ

dz
= R

cp

g

H
(6.298)

also is a constant.
It is easy to convince oneself that the quasigeostrophic basic equation (6.119) is satisfied

in the absence of heating by the constant zonal flow

ψ = −Uy (6.299)

The perturbation ansatz
ψ = −Uy + ψ ′ (6.300)

yields, neglecting all nonlinear terms in ψ ′,

0 =
(

∂

∂t
+U

∂

∂x

)[
∇2
hψ

′ + 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ ′

∂z

)]
+ β

∂ψ ′

∂x
(6.301)
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Here the altitude dependence of the coefficients can be removed by the substitution

ψ ′ = ez/2Hψr (6.302)

with the result

0 =
(

∂

∂t
+U

∂

∂x

)[
∇2
hψr + f 20

N 2

(
∂2ψr

∂z2
− ψr

4 H2

)]
+ β

∂ψr

∂x
(6.303)

The rest is routine. Due to the β-channel boundary conditions

ψr (x, y, z, t) =D0(y, z)

+
∞∑

n = −∞

∞∑
p= 1

∞∫
−∞

dm

∞∫
−∞

dω ψnpmω
[
δn0 cos(l p y) + (1 − δn0) sin(l p y)

]

× ei(knx+mz−ωt)

(6.304)
corresponding to

ψ ′ (x, y, z, t) = ez/2H D0(y, z)

+
∞∑

n = −∞

∞∑
p= 1

∞∫
−∞

dm

∞∫
−∞

dω ψnpmω
[
δn0 cos(l p y) + (1 − δn0) sin(l p y)

]

× ez/2H+i(knx+mz−ωt)

(6.305)
As dispersion relation for non-trivial ψnpmω we obtain

ω = knU − βkn

K 2 + f 20
N 2m

2 + 1

4L2
di

(6.306)

where K 2 = k2n + l2p is the squared total horizontal wavenumber. Clearly, κ2 in the two-
layer model here corresponds to m2 f 20 /N 2 + 1/4L2

di . The special treatment of the zonally
symmetric case n = 0 is analogous to its treatment in the two-layer model (appendix F).

6.3.3 Summary

As in the shallow-water equations the synoptic-scale variability of the stratified atmosphere
is carried by Rossby waves.



6.4 Baroclinic Instability 223

• They can be determined as solutions of the linear equations obtained by expanding the
dynamics about a state with constant zonal flow.

• In the two-layer model one finds a barotropic and a baroclinic mode.
– The dynamics of the barotropic mode corresponds to that of short-wave Rossby waves

in the shallow-water equations. The advection of planetary vorticity is balanced by
relative-vorticity advection, so that absolute vorticity is conserved.

– In the baroclinic mode the two streamfunctions are opposite in phase so that they
incorporate potential-temperature fluctuations. In the case of short wavelengths the
dynamics on each layer is governed again by the conservation of absolute vorticity.
At short wavelengths the planetary-vorticity advection is balanced by vortex-tube
stretching.

• In the continuously stratified atmosphere the isothermal case can be solved analytically.
Instead of just two modes, as in the two-layer case, one obtains separate solutions for
every vertical wavelength.

• In general the β-channel boundary conditions lead to a horizontal Rossby-wave structure
characterized by sequences of cyclones and anti-cyclones, as is characteristic for mid-
latitude synoptic-scale weather systems.

6.4 Baroclinic Instability

The daily extratropical synoptic-scale weather is essentially carried by baroclinic waves, as
also discernible in the low-level geopotential heights in Fig. 6.5. The basic mechanism in
the generation of these waves is the baroclinic instability of the zonal-mean atmosphere.
Differential solar heating of the atmosphere produces warm tropics and cold polar regions.
The corresponding potential-temperature distribution has meridional gradients ∂θ/∂ y on
the northern (southern) hemisphere which are negative (positive). Due to the thermal-wind
relation this implies ∂u/∂z > 0 which finds its expression in pronounced jet streams in
midlatitudes (Fig. 3.8). These gradients are baroclinically unstable. The atmosphere reacts
by the generation of baroclinic waves which transport heat from the tropics into the polar
regions, thus working against the origin of the instability. The latter, the primary generator
of synoptic weather in midlatitudes, shall be discussed here. We first consider the process in
the two-layer-model approximation, followed by a discussion of the continuously stratified
case. Without restriction of generality we limit ourselves to a discussion of the dynamics on
the northern hemisphere.
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Fig.6.5 950mb geopotential height as predicted by DWD for September 30 in 2020. Note the chains
of lows and highs discernible in the extratropics, to a large part due to baroclinic instability. Source:
Deutscher Wetterdienst

6.4.1 Baroclinic Instability in the Two-Layer Model

The Linear Equations
As starting point we take the inviscid equations of the quasigeostrophic two-layer model in
a β channel without orography. The first of these is the prognostic equation (6.243) for the
barotropic streamfunction which we repeat here:

∂

∂t
∇2
hψ + J (ψ, ∇2

hψ + f ) = −J (τ, ∇2
hτ) (6.307)

The second equation we obtain by elimination of ωm from (6.244) and (6.245):

∂

∂t

(∇2
hτ − κ2τ

) + J (τ, f ) = −J (τ, ∇2
hψ) − J (ψ, ∇2

hτ − κ2τ) (6.308)

It is easy to convince oneself that these equations are solved by

ψ = −Uy (6.309)

τ = −�Uy (6.310)

so that

ψ1,2 = − (U ± �U ) y (6.311)

u1,2 = U ± �U (6.312)

v1,2 = 0 (6.313)



6.4 Baroclinic Instability 225

HereU is the barotropic part of the zonalwind velocity, and�U the baroclinic part. The latter
corresponds to a meridional potential-temperature gradient so that potential temperature is
decreasing from south to north.One also finds, e.g., by inserting into (6.245), that the solution
does not entail any vertical flow:

ωm = 0 (6.314)

We now examine the dynamics of infinitesimally small perturbations of this solution. We
thus set

(
ψ

τ

)
=

( −Uy
−�Uy

)
+

(
ψ ′
τ ′

)
(6.315)

with infinitesimally small ψ ′ and τ ′. Inserting into (6.307) and (6.308) yields, neglecting all
terms nonlinear in the perturbation fields,

(
∂

∂t
+U

∂

∂x

)
∇2
hψ

′ + β
∂ψ ′

∂x
= − �U

∂

∂x
∇2
hτ

′

(
∂

∂t
+U

∂

∂x

)
(∇2

hτ
′ − κ2τ ′) + β

∂τ ′

∂x
= − �U

∂

∂x

(∇2
hψ

′ + κ2ψ ′)
(6.316)

(6.317)

In the following these equations shall be solved for arbitrary initial fields of ψ ′ and τ ′.

The Solution of the Initial-Value Problem
As shown in Sect. 6.3.1, due to theβ-channel boundary conditions the barotropic and barocli-
nic streamfunction can be decomposed according to (6.269) and (6.270). Inserting into
(6.316) and (6.317) eliminates D0

ψ and D0
τ , since they do not depend on t and x . One

obtains

0 =
∞∑

n =−∞
eikn x

∞∑
m = 1

{
δn0 cos(lm y)l2m

dψnm

dt

+ (1 − δn0) sin(lm y)
[(

d

dt
+ iknU

)
K 2
nmψnm

−iknβψnm + ikn�UK 2
nmτnm

]}
(6.318)

0 =
∞∑

n =−∞
eikn x

∞∑
m = 1

{
δn0 cos(lm y)

(
l2m + κ2

) dτnm

dt

+ (1 − δn0) sin(lm y)
[(

d

dt
+ iknU

)(
K 2
nm + κ2

)
τnm − iknβτnm

+ikn�U
(
K 2
nm − κ2

)
ψnm

]}
(6.319)
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yielding for the zonally symmetric parts with n = 0 and any m

dψ0m

dt
= dτ 0m

dt
= 0 (6.320)

i.e., the zonally symmetric part of the infinitesimally small perturbation does not develop in
time. This is not the case for the longitude-dependent part, since in the subspaces for each
n �= 0 and m

(
i

∂

∂t
− knU

)
K 2
nmψnm + knβψnm = kn�UK 2

nmτ nm (6.321)

(
i

∂

∂t
− knU

)
(K 2

nm + κ2)τ nm + knβτ nm = kn�U (K 2
nm − κ2)ψnm (6.322)

must hold. Here again K 2
nm = k2n + l2m is the squared total horizontal wave number. Now we

form twice the imaginary part of ψnm∗ (6.321)+ τ nm∗ (6.322). The result is1

∂

∂t

[
K 2
nm |ψnm |2 + (

K 2
nm + κ2) |τ nm |2] = 2kn�Uκ2Im(ψnm∗τ nm) (6.323)

Hence, in the absence of any velocity shear �U , the pseudoenergy

E ′ = K 2
nm |ψnm |2 + (

K 2
nm + κ2) |τ nm |2 (6.324)

is conserved within linear dynamics. Thus motivated we define the vector

�nm(t) =
(

Knmψnm

√
K 2
nm + κ2τ nm

)
(6.325)

with pseudoenergy norm
|�|2 = E ′ (6.326)

The transformed Eqs. (6.321) and (6.322) can then be written in the compact form

(
i

∂

∂t
− knU

)
�nm = Hnm�nm (6.327)

with

Hnm =
(

ωψ α

α − γ ωτ

)
(6.328)

1 The asterisk denotes complex conjugation.
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Here

ωψ = − βkn
K 2
nm

(6.329)

ωτ = − βkn
K 2
nm + κ2 (6.330)

are the intrinisc frequencies of barotropic and baroclinic Rossby waves in a reference frame
moving zonally at velocity U , and

α = kn�UKnm√
K 2
nm + κ2

(6.331)

γ = κ2

K 2
nm

α (6.332)

are contributions to Hnm , nonzero only if a zonal-wind shear �U �= 0 exists.
Fourier transformation of (6.327) in time, so that

�nm(t) =
∫ ∞

−∞
dω�nmωe−iωt (6.333)

yields the eigenvalue equation
ω̂�nmω = Hnm�nmω (6.334)

where
ω̂ = ω − knU (6.335)

is the intrinsic frequency observed in a reference frame moving at velocity U in zonal
direction. Non-trivial solutions �nmω must be eigenvectors of Hnm . The two eigenvalues
ω̂1,2 are determined via

det
(
Hnm − ω̂i I

) = 0 (6.336)

They hence solve
(ω̂i − ωψ)(ω̂i − ωτ ) = α (α − γ ) (6.337)

Since the coefficients of Hnm are all real, the two eigenvalues are either real or a complex-
conjugate pair, i.e., ω̂1 = ω̂∗

2. Up to a normalization factor the corresponding eigenvectors
�nm

1,2 are determined by

ω̂i�
nm
i = Hnm�nm

i (6.338)

The general solution of (6.327) is therefore

�nm(t) =
2∑

j = 1

�nm
j Anm

j e−iω j t (6.339)
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or

�nm(t) =
2∑
j=1

�nm
j Anm

j e−i(knU+ω̂ j)t (6.340)

For the determination of the Anm
j from the initial state we additionally consider the adjoint

problem
α̂i�

nm
i = Ht

nm�nm
i (6.341)

As one can easily convince oneself, the eigenvalues are the same as above. Because they are
either real-valued or a complex-conjugate pair, we can order them as

α̂i = ω̂∗
i (6.342)

Since

ω̂ j
(
�nm

i

)†
�nm

j = (
�nm

i

)†
Hnm�nm

j = (
Ht
nm�nm

i

)†
�nm

j = ω̂i
(
�nm

i

)†
�nm

j (6.343)

one has (
ω̂ j − ω̂i

) (
�nm

i

)†
�nm

j = 0 (6.344)

and therefore for i �= j (
�nm

i

)†
�nm

j = 0 (6.345)

Eigenvectors to different eigenvalues are orthogonal to each other.Without loss of generality
we choose their normalization factors so that

(
�nm

i

)†
�nm

j = δi j (6.346)

The initial perturbation

�nm(0) =
2∑

j = 1

�nm
j Anm

j (6.347)

can be projected directly onto the eigenvectors, with the result

Anm
j =

(
�nm

j

)†
�nm(0) (6.348)

The solution in physical space is reconstructed by determining, according to (6.325), for the
j-th eigenvector ψnm

j and τ nmj so that

�nm
j =

(
Knmψnm

j√
K 2
nm + κ2τ nmj

)
(6.349)
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where the index j does not indicate a layer! Then the general solution is

(
ψ ′
τ ′

)
(x, y, t) =

(
D0

ψ

D0
τ

)
(y)

+�
∞∑

n = −∞
eiknx

∞∑
m = 1

[
δn0

(
ψ0m

τ 0m

)
cos (lm y)

+ (1 − δn0) sin(lm y)
2∑
j=1

Anm
j

(
ψnm

j

τ nmj

)
e−i(knU+ω̂ j)t

]
(6.350)

where we also express the fact that only real fields can result from real initial conditions.
This solution is brought into a more explicit form in appendix G.

BaroclinicWaves andTheir Structure
In the following we consider three cases. For transparency of notation we often suppress the
indices n and m.

NoZonal-Wind Shear (�U = 0) In the absence of zonal-wind shear one has α (α − γ ) =
0. With this one obtains as solutions a superposition of the well-known free Rossby waves
with

ω̂1,2 = ωψ,τ (6.351)

Zonal-Wind Shear, but no β-effect (�U �= 0, β = 0) In this case we have

ωψ = ωτ = 0 (6.352)

The intrinsic frequencies thus satisfy

ω̂2
i = α(α − γ ) (6.353)

or

ω̂2
i = k2�U 2 K

2
nm − κ2

K 2
nm + κ2 (6.354)

The interesting case is the one of long waves with K 2
nm < κ2. For these we get

ω̂1,2 = ±i� (6.355)

with a growth rate

� = k�U

√
κ2 − K 2

nm

κ2 + K 2
nm

(6.356)
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The time dependence of the perturbation is

2∑
j = 1

Anm
j

(
ψnm

j

τ nmj

)
e−i(knU+ω̂ j)t

= Anm
1

(
ψnm
1

τ nm1

)
e−iknUt e�t + Anm

2

(
ψnm
2

τ nm2

)
e−iknUt e−�t (6.357)

The first part thus grows exponentially! This is the baroclinic instability.2 From a virtually
arbitrary initial perturbation, with a nonzero projection onto such a baroclinic wave, the
latter will grow and progressively dominate. This growth can only be halted by nonlinear
dynamics. Since an initial perturbation typically has contributions from different n and
m, one usually observes a superposition of growing waves, which again will finally be
dominated by the fastest growing mode. We note the following:

• Without β-effect one finds an instability for all �U .
• This necessitates K < κ . The corresponding wavelength is in midlatitudes

λ = 2π

K
>

2π

κ
≈ 3000 km (6.358)

Baroclinic instability is characterized by relatively large wavelengths. The extension of
the corresponding pressure anomalies is approximately λ/2. This is consistent with the
synoptic-scale estimate L = 1000km.

• The growth rate is largest at
∂�

∂k
= ∂�

∂l
= 0 (6.359)

This leads to l = 0 and K 2
nm =

(√
2 − 1

)
κ2, and thus

(k, l)max =
(√√

2 − 1κ, 0

)
(6.360)

However, since the smallest possible meridional wavenumber component is l = π/Ly ,
the more precise result is

(k, l)max =

⎧⎪⎨
⎪⎩κ

√√√√√
⎡
⎣
√√√√2

(
1 + π2

κ2 L2
y

)
− 1

⎤
⎦ − π2

κ2 L2
y
,

π

Ly

⎫⎪⎬
⎪⎭ (6.361)

For Ly � π/κ ≈ 1500km, however, the difference is negligible. The zonal wavelength
for maximum growth then is in midlatitudes

2 A critical reader might remark that complex frequencies are not really admitted by Fourier trans-
forms. The mathematically cleanest way would be applying Laplace transforms, but the final results
are basically the same.
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λ = 2π

kmax
≈ 2π√√

2 − 1κ
≈ 5000 km (6.362)

For a determination of the structure of a baroclinically unstable wave we Fourier transform
(6.321) in time, obtaining

ω̂K 2
nmψnmω + knβψnmω = kn�UK 2

nmτ nmω (6.363)

With β = 0, (6.355), and (6.356) this leads for the growing baroclinic wave to

τ nm1 = i
�

kn�U
ψnm
1 =

√
κ2 − K 2

nm

κ2 + K 2
nm

ei
π
2 ψnm

1 (6.364)

Thus the corresponding streamfunctions in the two layers are

(ψnm
1,2 )1 = ψnm

1 ± τ nm1 = ψnm
1

(
1 ± i

√
κ2 − K 2

nm

κ2 + K 2
nm

)

=
√
2κ√

κ2 + K 2
nm

e±iεψnm
1 (6.365)

where

ε = arctan

√
κ2 − K 2

nm

κ2 + K 2
nm

(6.366)

is half the phase difference between the upper and the lower layer. In the subspace of the
wavenumber combination with largest growth we may now decompose Anm

1 ψnm
1 = Aψeiα ,

so that the barotropic streamfunction of the growing part is, due to (6.350),

ψ ′(x, y, t) = �
[
Anm
1 ψnm

1 sin(lm y) e
i(knx−knUt)e�t

]

= Aψ sin(lm y) cos (knx − knUt + α) e�t (6.367)

and thus the baroclinic streamfunction, via (6.364),

τ ′(x, y, t) = �
[
Anm
1 τ nm1 sin(lm y) e

i(knx−knUt)e�t
]

=
√

κ2 − K 2
nm

κ2 + K 2
nm

Aψ sin(lm y) cos(knx − knUt + α + π

2
)e�t (6.368)

It thus leads the barotropic streamfunction by a phase difference π/2, correspondingly in x
by �x = λ/4, where λ = 2π/kn is the zonal wavelength of the wave. The streamfunctions
in the two layers thus are
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ψ ′
1,2(x, y, t) = ψ ± τ

=
√
2κ√

κ2 + K 2
nm

Aψ sin(lm y) cos(knx − knUt + α ± ε)e�t (6.369)

The upper-layer streamfunction leads the barotropic streamfunction in phase by ε, or in x by
�x = λε/2π . By the same difference the lower-layer streamfunction follows the barotropic
streamfunction. The resulting westward tilt of the phase with increasing altitude is sketched
in Fig. 6.6. Note that the middle-layer potential temperature θ ′

m is given, due to (6.252), up to
a constant factor by the baroclinic streamfunction. The meridional-wind velocity there is
v′ = ∂ψ ′/∂x , leadingψ ′ in phase by π/2. Thus v′ is in phase with θ ′. The westward tilt thus
implies that warm air is transported northwards, and cold air southwards. The baroclinic
wave thus operates against the cause of its instability.

Zonal-Wind Shear and β-Effect (�U �= 0, β �= 0) In the general case the solution of
(6.337) is

ω̂1,2 = ωψ + ωτ

2
±

√(
ωψ − ωτ

2

)2

+ α(α − γ ) (6.370)

The argument of the square root must be negative for an instability. This implies

trough

ridgeridge

p = p1
ψ1

ψ

λ0

τ

ψ2

p = pm

p = p2

λ
4

3λ
4

λ
2

x – Ut

Fig. 6.6 Longitude–altitude structure of a growing baroclinic wave. Note the westward tilt of the
phase. The potential temperature in the intermediate layer, proportional to τ , is in phase with the
meridional wind v = ∂ψ/∂x at the same altitude



6.4 Baroclinic Instability 233

α (α − γ ) < 0 and

(
ωψ − ωτ

2

)2

< α (γ − α)

leading to

K 2
nm < κ2 and β2κ4 < 4�U 2K 4

nm(κ4 − K 4
nm) (6.371)

The β-effect thus stabilizes the flow. At a given total Knm an instability is only possible if

�U 2 > G (Knm) = β2κ4

4K 4
nm(κ4 − K 4

nm)
(6.372)

This is also sketched in Fig. 6.7. No instability is possible if �U 2 is below the minimum of
G. The latter is

minG (K ) = β2

κ4 at K 2
nm = κ2

√
2

Thus the flow is only unstable if

�U 2 >
β2

κ4 (6.373)

The following is also important:

unstable
region

∆U2

β2/κ4

κ2/√2 κ2 K2

β2 κ4

4K4(κ4 – K4)
G(K) =

Fig.6.7 For a quasigeostrophic two-layer model, the baroclinically unstable region in a K 2 −�U2-
diagram
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• In the unstable regime the growth rate

� =
√

α(γ − α) −
(

ωψ − ωτ

2

)2

(6.374)

is again largest at l = π/Ly . The zonal wavenumber with largest instability is close to

kmax ≈ κ

21/4
(6.375)

corresponding to a wavelength λ = 21/42π/κ ≈ 3000km.
• The latitude dependence of the potential for baroclinic instability is also interesting. The

definitions of κ and β imply
β

κ2 = σ�p2

4�a

cosφ0

sin2 φ0
(6.376)

The minimum zonal-wind shear which must be exceeded for an instability also depends
on the reference latitude φ0. On the synoptic scale, which here is the focus, the tropics are
muchmore stable than themidlatitudes (Fig. 6.8). Atφ0 = 45◦ one finds that�U > 3m/s
must be satisfied, corresponding to a zonal-wind shear between the two layers of 6m/s.

Fig. 6.8 Latitude dependence
of the minimum zonal-wind
shear necessary for a baroclinic
instability. The tropics are
much more stable than the
midlatitudes

tropics more stable!

equator ϕ0

β/κ2
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Mechanisms and Energetics
For the further analysis of the mechanisms and energetics of the baroclinic instability we
linearize (6.243), (6.244), and (6.245) directly about

⎛
⎝ ψ

τ

ωm

⎞
⎠ =

⎛
⎝ −Uy

−�Uy
0

⎞
⎠ (6.377)

The result is (
∂

∂t
+U

∂

∂x

)
∇2
hψ

′ + β
∂ψ ′

∂x
= −�U

∂

∂x
∇2
hτ

′ (6.378)

(
∂

∂t
+U

∂

∂x

)
∇2
hτ

′ + β
∂τ ′

∂x
= −�U

∂

∂x
∇2
hψ

′ + f0
�p

ω′
m (6.379)

(
∂

∂t
+U

∂

∂x

)
τ ′ − �U

∂ψ ′

∂x
= σ�p

2 f0
ω′
m (6.380)

Together with the boundary conditions of the β-channel the integral −2
∫
d2x

[
ψ ′

(6.378)+ τ ′ (6.379) ] is

dK ′

dt
= −2 f0

�p

Ly∫
0

dy

Lx∫
0

dx τ ′ω′
m

K ′ =
Ly∫
0

dy

Lx∫
0

dx
(∇hψ

′ · ∇hψ
′ + ∇hτ

′ · ∇hτ
′)

(6.381)

(6.382)

while 2κ2
∫
d2xτ ′ (6.380) yields

d A′

dt
= 2 f0

�p

Ly∫
0

dy

Lx∫
0

dx τ ′ω′
m + 2�Uκ2

Ly∫
0

dy

Lx∫
0

dx τ ′ ∂ψ ′

∂x

A′ =
Ly∫
0

dy

Lx∫
0

dx κ2τ ′2

(6.383)

(6.384)

A perturbation grows if
d

dt
(K + A) > 0 (6.385)
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which is equivalent to

2�Uκ2

Ly∫
0

dy

Lx∫
0

dx τ ′ ∂ψ ′

∂x
> 0 (6.386)

In the integral one must also have predominantly τ ′∂ψ ′/∂x > 0, which is equivalent to
f0θ ′

mv′ > 0 so that warm air is transported to the pole and cold air to the equator. As
a consequence, available potential energy Ā of the basic flow is reduced and exchanged
into available potential energy A′ of the perturbations. As we have already convinced us
above, this is the case for growing baroclinic waves. Vice versa an oppositely directed mean
transport so that f0θ ′

mv′ < 0 implies that the perturbation is damped.
The other partial process we have already met in the discussion of the general energetics

of the two-layer model: If

− 2 f0
�p

Ly∫
0

dy

Lx∫
0

dx τ ′ω′
m > 0 (6.387)

available potential energy A′ of the perturbation is transformed into kinetic energy K ′ of the
perturbation. Since up to a factor τ ′ is equivalent to θ ′

m , the condition for this is that warm
air rises and cold air sinks. Also this can be checked directly for growing baroclinic waves.
For simplicity we limit ourselves for this to the case β = 0: First, the Fourier transform of
(6.380) yields

ωnmω
m = − 2i f0

σ�p
(ω̂τ nmω + kn�Uψnmω) (6.388)

Together with ω̂ = ω̂1 = i�, (6.356), and (6.364) one obtains from this for the growing
baroclinic wave

(ωm)nm1 = − 4 f0
σ�p

�
K 2
nm

κ2 − K 2
nm

τ nm1 (6.389)

One thus sees that in this waveω′
m and τ ′ have opposite phases, as we could show. Figures6.9

and 6.10 summarize what we have learned.

6.4.2 Baroclinic Instability in a Continuously Stratified Atmosphere

The Linear Equations
Starting point for the analysis of a continuously stratified atmosphere is the quasigeostrophic
potential-vorticity conservation Eq. (6.119) without heating. As boundary conditions we
use in the horizontal those of the β-channel, i.e., (6.204–6.206). Orography and heating are
neglected, so that the vertical boundary condition at the ground is given by (6.207). As upper
boundary condition we can use (6.208). In the case of an approximation where a solid upper
boundary of the atmosphere is assumed at altitude H , we can use alternatively, in analogy
with (6.207),
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ridge ridgetrough

v' < 0 v' > 0

ϑ' > 0
τ' > 0
warm

ωm'  < 0ωm'  > 0

ϑ' < 0
τ' < 0
cold

Fig. 6.9 Longitude–altitude section of the exchange processes determining the energetics of a gro-
wing baroclinic wave in the northern hemisphere: The meridional heat transport conveys warm (cold)
air to the north (south). The vertical transport leads to upward (downward) motion of warm (cold)
air masses

v' ϑ' > 0

ω' ϑ' < 0

available potential
energy of the basic flow 

waveK 'A '

A

Fig.6.10 Schematic representation of the energy-exchange processes in a baroclinic instability. The
meridional transport transforms available potential energy in the basic flow into available potential
energy of the growing wave, while vertical heat transport transforms the latter into kinetic energy of
the wave
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Dg

Dt

∂ψ

∂z

∣∣∣∣
z = H

= 0 (6.390)

It is easy to convince oneself that these equations are solved by a zonally symmetric and
steady streamfunction

ψ = ψ̄ (y, z) (6.391)

with corresponding horizontal wind fields

ū = −∂ψ̄

∂ y
(6.392)

v̄ = 0 (6.393)

At a sufficiently strong vertical gradient of ū we again expect a baroclinic instability.
With the aim of a corresponding analysis we linearize the equations about this basic flow,

i.e., we use the perturbation ansatz

ψ = ψ̄ (y, z) + ψ ′ (x, y, z, t) (6.394)

with infinitesimally smallψ ′, insert this into the equations and then neglect all contributions
which are nonlinear in ψ ′. Inserting this into (6.119) thus leads to

(
∂

∂t
+ ū

∂

∂x

)
π ′ + ∂ψ ′

∂x

∂π̄

∂ y
= 0 (6.395)

where

π ′ = ∇2
hψ

′ + 1

ρ

∂

∂z

(
ρ f 20
N 2

∂ψ ′

∂z

)
(6.396)

is the quasigeostrophic potential vorticity of the perturbation, and

π̄ = ∂2ψ̄

∂ y2
+ f + 1

ρ

∂

∂z

(
ρ f 20
N 2

∂ψ̄

∂z

)
(6.397)

that of the basic flow, with meridional gradient

∂π̄

∂ y
= −∂2ū

∂ y2
+ β − 1

ρ

∂

∂z

(
ρ f 20
N 2

∂ ū

∂z

)
(6.398)

The linearization of the meridional boundary conditions (6.206) leads to

∂ψ ′

∂x
= 0 (y = 0, Ly) (6.399)
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while the vertical boundary condition (6.207) yields

0 =
(

∂

∂t
+ ū

∂

∂x

)
∂ψ ′

∂z
+ ∂ψ ′

∂x

∂

∂ y

∂ψ̄

∂z
(z = 0) (6.400)

or

0 =
(

∂

∂t
+ ū

∂

∂x

)
∂ψ ′

∂z
− ∂ψ ′

∂x

∂ ū

∂z
(z = 0) (6.401)

If needed such a boundary condition can also be applied at a solid upper boundary at z = H .
As in the case of the two-layer model we can assume, without restriction of generality,

that the perturbation can be represented as

ψ ′ =
∑
k

∫ ∞

−∞
dωei(kx−ωt)ψ̂ (k, y, z, ω) (6.402)

where the contributing zonal wavenumbers are

k = n
2π

Lx
(n ε Z) (6.403)

Inserting this into (6.395) yields

(ω − kū)

[
−k2ψ̂ + ∂2ψ̂

∂ y2
+ 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ̂

∂z

)]
− kψ̂

∂π̄

∂ y
= 0 (6.404)

while the boundary conditions (6.399) and (6.401) lead to

ψ̂ = 0
(
y = 0, Ly k �= 0

)
(6.405)

and

(ω − kū)
∂ψ̂

∂z
+ kψ̂

∂ ū

∂z
= 0 (z = 0) (6.406)

Similar to the two-layer model we do not expect any wave growth in the zonally symmetric
case k = 0 so that we limit ourselves in the following to longitude dependent perturbations
with k �= 0.

The Rayleigh Theorem
Aclosed analytical treatment of the linear equations is only possible in special cases. Beyond
these, however, there is a general theorem that tells us under which conditions a zonally
symmetric flow can become unstable within the framework of quasigeostrophic theory at
all. For this we assume à priori that

ω = ωr + i� (� > 0) (6.407)

and examine under which cases this does not lead to a contradiction.
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We first take the real and imaginary part of (6.404)/(ω − kū):

∂2ψ̂r

∂ y2
+ 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ̂r

∂z

)
−

(
k2 + kδr

∂π̄

∂ y

)
ψ̂r − kδi

∂π̄

∂ y
ψ̂i = 0 (6.408)

∂2ψ̂i

∂ y2
+ 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ̂i

∂z

)
−

(
k2 + kδr

∂π̄

∂ y

)
ψ̂i + kδi

∂π̄

∂ y
ψ̂r = 0 (6.409)

where the Fourier transform of the streamfunction has been decomposed into

ψ̂ = ψ̂r + iψ̂i (6.410)

and we have

δr = ωr − kū

(ωr − kū)2 + �2
(6.411)

δi = �

(ωr − kū)2 + �2
(6.412)

Moreover, real and imaginary part of (6.406)/(ω − kū) are

∂ψ̂r

∂z
+ k

∂ ū

∂z

(
δr ψ̂r + δi ψ̂i

)
= 0 (6.413)

∂ψ̂i

∂z
+ k

∂ ū

∂z

(
δr ψ̂i − δi ψ̂r

)
= 0 (6.414)

Now we form ψ̂i (6.408) −ψ̂r (6.409) and multiply this by ρ, with the result

ρ
∂

∂ y

(
ψ̂i

∂ψ̂r

∂ y
− ψ̂r

∂ψ̂i

∂ y

)
+ ∂

∂z

[
ρ

f 20
N 2

(
ψ̂i

∂ψ̂r

∂z
− ψ̂r

∂ψ̂i

∂z

)]
− ρkδi

∂π̄

∂ y

∣∣∣ψ̂∣∣∣2 = 0

(6.415)
This we integrate in y and z and obtain

∞∫
0

dzρ

[
ψ̂i

∂ψ̂r

∂ y
− ψ̂r

∂ψ̂i

∂ y

]Ly

0

+
Ly∫
0

dy

[
ρ

f 20
N 2

(
ψ̂i

∂ψ̂r

∂z
− ψ̂r

∂ψ̂i

∂z

)]∞

0

=
∞∫
0

dz

Ly∫
0

dyρkδi
∂π̄

∂ y

∣∣∣ψ̂∣∣∣2 (6.416)
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Application of the boundary conditions (6.405) and (6.208) yields

∞∫
0

dz

Ly∫
0

dyρkδi
∂π̄

∂ y

∣∣∣ψ̂∣∣∣2 +
Ly∫
0

dy

[
ρ

f 20
N 2

(
ψ̂i

∂ψ̂r

∂z
− ψ̂r

∂ψ̂i

∂z

)]
z=0

= 0 (6.417)

From (6.413) and (6.414) we furthermore obtain

ψ̂i
∂ψ̂r

∂z
− ψ̂r

∂ψ̂i

∂z
= −k

∂ ū

∂z
δi

∣∣∣ψ̂∣∣∣2 (6.418)

so that (6.417) becomes, using (6.412),

�k

⎡
⎢⎣

∞∫
0

dzρ

Ly∫
0

dy
∂π̄

∂ y

∣∣∣ψ̂∣∣∣2
|ω − kū|2 −

Ly∫
0

dy

⎛
⎜⎝ρ

f 20
N 2

∂ ū

∂z

∣∣∣ψ̂∣∣∣2
|ω − kū|2

⎞
⎟⎠

z=0

⎤
⎥⎦ = 0 (6.419)

In the case of an instability, however, one has � > 0 so that we obtain as condition for this

∞∫
0

dzρ

Ly∫
0

dy
∂π̄

∂ y

∣∣∣ψ̂∣∣∣2
|ω − kū|2 −

Ly∫
0

dy

⎛
⎜⎝ρ

f 20
N 2

∂ ū

∂z

∣∣∣ψ̂∣∣∣2
|ω − kū|2

⎞
⎟⎠

z=0

= 0 (6.420)

In the application of this three interesting cases must be considered:

NoWind Shear at theGround (∂ ū/∂z|z=0 = 0): In this case the second integral vanishes.
For the other to also do so, ∂π̄/∂ ymust change sign in themodel volume. This is theRayleigh
condition, also to be used as condition for a barotropic instability.

Positive Meridional Gradient of Basic-Flow Potential Vorticity (∂π̄/∂ y ≥ 0): This is
the typical case, since typically planetary vorticity dominates so that

∂π̄

∂ y
≈ β > 0 (6.421)

Clearly, in this case we must have at least locally

∂ ū

∂z

∣∣∣∣
z=0

> 0 (6.422)

This is the scenario of a baroclinic instability.
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Negative Wind Shear Everywhere at the Ground (∂ ū/∂z|z=0 < 0): This requires that
at least locally

∂π̄

∂ y
< 0 (6.423)

For the reasons given above this is rather seldom.

The Eady Problem
Finally we consider an approximation, due to Eady (1949), enabling an analytical treatment
of baroclinic waves and their growth rates. Essential aspects of baroclinic instability in a
continuously stratified atmosphere are captured this way. The assumptions are:

• Density and stability of the reference atmosphere are constants, i.e.,

ρ = const. (6.424)

N 2 = const. (6.425)

• We are on an f -plane, i.e.,
β = 0 (6.426)

The consequences of this approximation we could already discuss within the framework
of a two-layer model.

• The zonal wind increases at a constant rate from the ground, i.e.,

ū = �z (6.427)

so that
∂ ū

∂z
= � = const. (6.428)

• The atmosphere has solid boundaries at z = 0 and z = H . This means that (6.406) also
holds at z = H .

Under these conditions one has
∂π̄

∂ y
= 0 (6.429)

so that (6.404) becomes

− k2ψ̂ + ∂2ψ̂

∂ y2
+ f 20

N 2

∂2ψ̂

∂z2
= 0 (6.430)

The boundary condition (6.406) is, together with its analogue for z = H

(ω − k�z)
∂ψ̂

∂z
+ k�ψ̂ = 0 (z = 0, H) (6.431)
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The meridional boundary conditions (6.405), however, also imply

ψ̂ (k, y, z, ω) =
∑
l

sin (ly) ψ̃ (k, l, z, ω) (6.432)

l = m
π

Ly
(m ≥ 1) (6.433)

so that we obtain from (6.430)
∂2ψ̃

∂z2
− α2ψ̃ = 0 (6.434)

with

α2 = N 2

f 20

(
k2 + l2

)
(6.435)

The general solution of this equation is

ψ̃ = A sinh αz + B cosh αz (6.436)

Dispersion relation and structure of the corresponding baroclinic waves are obtained from
the two boundary conditions (6.431). These yield

M

(
A
B

)
= 0 (6.437)

with

M =

⎛
⎜⎜⎝

ωα k�

α (ω − k�H) cosh αH α (ω − k�H) sinh αH
+k� sinh αH +k� cosh αH

⎞
⎟⎟⎠ (6.438)

Non-trivial solutions only exist if
det (M) = 0 (6.439)

This leads to the dispersion relation

ω1,2 = k
�H

2
± k

�H

2

√
1 − 4 cosh αH

αH sinh αH
+ 4

α2H2 (6.440)

One has an instability if the argument of the square root is negative. Via

tanh αH =
2 tanh

αH

2

1 + tanh2
αH

2

(6.441)
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we find that this means that

0 >
4

α2 H2

(
α2 H2

4
− αH cosh αH

sinh αH
+ 1

)

= 4

α2 H2

[
α2 H2

4
− αH

2

(
coth

αH

2
+ tanh

αH

2

)
+ 1

]

= 4

α2 H2

(
αH

2
− coth

αH

2

)(
αH

2
− tanh

αH

2

)
(6.442)

The last factor is always positive, so that the instability condition is

αH

2
< coth

αH

2
(6.443)

Numerically this leads to
αH < 2.399 (6.444)

or √
k2 + l2 <

2.399

Ldi
(6.445)

The corresponding wavenumbers thus must satisfy

λ = 2π√
k2 + l2

>
2π

2.399
Ldi ≈ 3000 km (6.446)

since in midlatitudes one has Ldi ≈ 1000km. A further numerical analysis shows that the
growth rate

� = k
�H

2

√
4 cosh αH

αH sinh αH
− 1 − 4

α2 H2 (6.447)

is largest at

l = 0 (6.448)

αH = 1.6 (6.449)

This leads to
(k, l) = (1.6/Ldi , 0) (6.450)

The corresponding zonal wavelength is

λ = 2π

1.6
Ldi ≈ 4000 km (6.451)

There one has

� ≈ 0.3
�H

Ldi
(6.452)
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With�H = ū(z = H) ≈ 20m/s and Ldi ≈ 1000km this leads to� ≈ 0.52d−1. Figure6.11
shows the complete dependence of the growth rate on the two horizontal wavenumbers.

The vertical structure can again be obtained from the vertical boundary conditions.
(6.437) and (6.438) yield

A = −k�

αω
B = −k�

α

(
ωr

|ω|2 − i
�

|ω|2
)
B (6.453)

Inserting this into (6.436), with B = Aψ , leads to

ψ̃ = Aψ

(
cosh αz − k�ωr

α |ω|2 sinh αz + i
k��

α |ω|2 sinh αz

)
(6.454)

Then the tangent of the phase in ψ̃ = |ψ̃ |eiε is

tan ε = k��

α |ω|2
sinh αz

cosh αz − k�ωr

α |ω|2 sinh αz
(6.455)

and its vertical derivative
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Fig. 6.11 Dependence of the growth rate � of a baroclinic wave within the framework of the Eady
problem on zonal wavenumber k and meridional wavenumber l. � has been normalized by�H/Ldi ,
and the wavenumbers by 1/Ldi
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∂

∂z
tan ε = k��

α |ω|2
1(

cosh αz − k�ωr

α |ω|2 sinh αz

)2 (6.456)

For � > 0 the phase increases with altitude, and we again obtain the westward tilt of the
growing wave with altitude. Correspondingly, a decaying wave exhibits an eastward phase
tilt. Figure6.12 shows the longitude–altitude structure of the wave. One clearly recognizes
thewestward phase tilt, and the phase equality between potential temperature andmeridional
wind in middle altitudes. Conspicuous is also the relatively simple altitude dependence.
This is the reason why the two-layer model is so good at the description of the baroclinic
instability.

6.4.3 Summary

The engine of daily weather at midlatitudes is baroclinic instability. Solar radiation esta-
blishes a meridional potential-temperature gradient between tropics and polar regions,
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Fig.6.12 Longitude–altitude structure of the most rapidly growing baroclinic wave (left column) and
a marginally stable wave with � ≈ 0 (right). Shown are, in normalized quantities, the streamfunction
ψ ′ (top row), its vertical gradient ∂ψ/∂z, again proportional to the potential temperature (middle),
and the meridional wind v′ = ∂ψ ′/∂x (bottom)
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accompanied via the thermal-wind equation by a pronounced jet stream of strong wester-
lies in the upper troposphere. To these gradients the atmosphere reacts by the formation of
baroclinic waves working by a poleward heat transport against the origin of the instability.

Essential aspects can already be recognizedwithin the framework of the two-layer model:

• Again one considers the linear dynamics of infinitesimally small perturbations of the
zonally-symmetric solution. Via Fourier transformation in zonal andmeridional direction
the dynamics of separate wavenumber combinations are decoupled from each other.

• In the solution of the initial-value problem the various eigenmodes, from which the
general solution can be constructed, are not orthogonal any more, as was the case in the
geostrophic adjustment problem in the shallow-water equations. Via the simultaneous
solution of the corresponding adjoint problem, however, a decomposition of the initial
state into the contributions from the various eigenmodes becomes possible.

• The eigenfrequencies result from the dispersion relation, identifying all combinations
of wavenumber and frequency under which the linear operator of the problem becomes
singular. The polarization relations yield the structure of the corresponding eigenmodes.

• Neglect of the β-effect yields the following results:
– The atmosphere is unstable for every zonal-wind shear, i.e., there are eigenfrequencies

with positive imaginary part, also known as growth rate.
– This instability, however, only acts at horizontal wavelengths above a lower threshold

determined via κ by stratification and rotation. At typical atmospheric conditions it
is at about 3000km.

– The most strongly growing baroclinic wave has a purely zonal propagation direction
in the horizontal.

– The vertical structure exhibits a characteristic westward phase inclination. This
implies that the growing baroclinic waves transport potential temperature from the
tropics to the poles.

• A generalized analysis shows that the β-effect stabilizes the flow. For the possibility of
an instability the zonal-wind shear must be above a threshold rising with the meridional
planetary-vorticity gradient. Other determining factors are stratification and rotation. As
a result of this no baroclinic instability is possible in the tropics.

• The analysis of the energetics of the growth process bears out that poleward heat transport
is responsible for the wave growth. Via this process available potential energy of the basic
flow is transformed into available potential energy of the waves. By the rising of warm air
masses and the sinking of cold air masses this available potential energy is transformed
into kinetic energy in the waves.

The more general treatment for the continuously stratified atmosphere yields the following
additional aspects:
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• In addition to the linearized conservation equation for quasigeostrophic potential vor-
ticity here also the linearization of the vertical boundary conditions must be taken into
account, which had already been incorporated into the two-layer model equations. The
vertical wind vanishes at the ground. Toward the top either density or vertical wind must
vanish.

• The Rayleigh theorem yields necessary conditions for the instability of general zonally-
symmetric profiles of zonal wind and potential temperature in thermal-wind balance. The
most important cases are:
– If the vertical zonal-wind shear vanishes at the ground the meridional potential-

vorticity gradient must change sign in the atmosphere.
– However, if the latter is positive everywhere, which is typically the case, there must

be regions at the ground where the zonal wind increases vertically.
• An analytical solution of the stability problem is possible in the Eady approximation.

One assumes that the atmosphere is homogeneous and neglects the β-effect.
– One noteworthy result is that the shortest possible horizontal wavelength at which an

instability can occur scales with the internal Rossby deformation radius. The same
holds for the wavelength where the instability maximizes. Thus also here rotation and
stratification control the instability scales.

– As also in the two-layer model the largest growth rate scales with the ratio between
upper-troposphere zonal wind and internal Rossby deformation radius.

– Thewestward phase tilt is also found. In general the vertical structure is simple enough
to explain why the two-layer model can give results as realistic.

6.5 Recommendations for Further Reading

Recommendable textbooks, each covering the topic of quasigeostrophic theory and barocli-
nic instability in its own way, are Holton and Hakim (2013), Pedlosky (1987), Salmon
(1998), and Vallis (2006). The first development of quasigeostrophic theory has been done
by Charney (1948), while two-layer models go back to Phillips (1954). Although one often
sees quasigeostrophic theory being used in studies of large-scale planetary waves, strictly
speaking it does not apply to those, because the horizontal scale is not smaller than the
radius of earth anymore. Phillips (1963) has suggested instead the planetary geostrophic
equations, and the reader might consult Dolaptchiev and Klein (2013), Dolaptchiev et al.
(2019), and the sources therein on the present state of this topic. Classic books on all kinds
of hydrodynamic instabilities are Chandrasekhar (1981) and Drazin and Reid (2004). The
original source for the Eady model is Eady (1949). A treatment of baroclinic instability
with less restrictions on the assumed atmosphere has been given by Charney (1947). Classic
papers on the nonlinear development of baroclinic instability are Simmons and Hoskins
(1978), and a thorough discussion of the topic from the potential-vorticity perspective has
been given by Hoskins et al. (1985). Original citations on the Rayleigh theorem applied to
the atmosphere are Charney and Stern (1962) and Pedlosky (1964).
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