
8The Interaction Between RossbyWaves and the
Mean Flow

The following questions are central in studies of the global circulation:

• Is the mean flow influenced by atmospheric waves like gravity waves or Rossby waves?
And if so, how?

• Vice versa, how does the mean flow influence the waves?

Here, the term mean flow stands for the zonal average, which is for an arbitrary quantity X
defined as

〈X〉 = 1

2π

2π∫

0

dλX (8.1)

It often suffices to consider the β-channel. Here one would correspondingly use

〈X〉 = 1

Lx

Lx∫

0

dx X (8.2)

where Lx is the distance in x overwhich all quantities are periodic, so that X(x) = X(x+Lx ).
Eddies are deviations

X ′ = X − 〈X〉 (8.3)

from themean flow. Awave is an eddy that satisfies a dispersion relation. Because dispersion
relations are a result of linear theory, this requires the amplitude of thewaves to be sufficiently
small. Classic turbulence is not composed from waves, but atmospheric variability can
often be seen as resulting from a superposition of waves. This does not rule out nonlinear
interactions between the individual waves. In the next two chapters we first discuss the basics
of the interaction between waves and a mean flow, which will then be applied to the problem
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302 8 The Interaction Between RossbyWaves and the Mean Flow

of the meridional circulation. For the time being we will leave out the topic of gravity waves.
In most cases it is useful to resort to quasigeostrophic theory which will be given ample
space.

8.1 Basics of Quasigeostrophic Theory

For better readability we begin by recapitulating the most important elements of quasi-
geostrophic theory. First applications and extensions lay the ground for the subsequent
discussions. For reasons of simplicity, but without loss of generality, we generally restrict
ourselves to the geometry of the β-plane.

8.1.1 The Governing Equations

In quasigeostrophic theory the variable part of all quantities can be obtained from the stre-
amfunction

ψ = p − p

f0ρ
(8.4)

with p being the pressure, and p and ρ pressure and density of the reference atmosphere,
which only depends on altitude. In particular the geostrophic horizontal wind can be com-
puted from

ug = −∂ψ

∂ y
(8.5)

vg = ∂ψ

∂x
(8.6)

The potential temperature is

θ = θ

(
1 + f0

g

∂ψ

∂z

)
(8.7)

Here θ is the potential temperature of the reference atmosphere. Defining θ̃ = θ − θ as the
deviation of the potential temperature from θ , buoyancy becomes

b = g
θ̃

θ
(8.8)

or

b = f0
∂ψ

∂z
(8.9)
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Quasigeostrophic potential vorticity

π = ζ + f + 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)
(8.10)

therefore can be written as

π = ζ + f + 1

ρ

∂

∂z

(
ρ

f0
N 2 b

)
(8.11)

where

ζ = ∂vg

∂x
− ∂ug

∂ y
= ∇2

hψ (8.12)

is the relative vorticity and
f = f0 + β y (8.13)

the latitude-dependent planetary vorticity. ∇2
h = ∂2/∂x2 + ∂2/∂ y2 denotes the horizontal

part of the Laplacian. Potential vorticity satisfies the conservation equation

∂π

∂t
+ ug · ∇π = D (8.14)

with D describing the influence of all non-conservative processes. This includes friction,
heating, andheat conduction.Using (8.5) and (8.6) the conservation equation canbe rewritten
as

∂π

∂t
+ J (ψ, π) = D (8.15)

with

J (A, B) = ∂A

∂x

∂B

∂ y
− ∂A

∂ y

∂B

∂x
(8.16)

the Jacobi operator for arbitrary fields A and B. In a similar manner the quasigeostrophic
entropy equation can be written as

∂θ̃

∂t
+ J (ψ, θ̃) + w

dθ

dz
= qθ (8.17)

Here all non-conservative terms are subsumed under qθ . Using (8.8) the entropy equation
becomes

∂b

∂t
+ J (ψ, b) + wN 2 = Q (8.18)

where

N 2 = g

θ

dθ

dz
(8.19)
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is the squared Brunt–Väisälä frequency, and Q = gqθ /θ . The lower boundary condition
from Ekman theory prescribes

z = 0 : w =
√

K

2 f0
∇2
hψ (8.20)

or, using (8.18),

z = 0 : ∂b

∂t
+ J (ψ, b) = −N 2

√
K

2 f0
∇2
hψ + Q (8.21)

8.1.2 Conservation Properties

Under the condition
D = Q = K = 0 (8.22)

quasigeostrophic dynamics conserves various quantities. One of those is the total energy

E = 1

2

∫
V
dVρ

(
|∇hψ |2 + b2

N 2

)
(8.23)

where one must integrate over the volume of the entire atmosphere. One has

dE

dt
= 0 (8.24)

Moreover, because of (8.14) every differentiable function F(π) satisfies

∂F

∂t
+ ug · ∇F = 0 (8.25)

Due to the fact that the geostrophic wind has no horizontal divergence

∇ · ug = 0 (8.26)

we can also write
∂F

∂t
+ ∇ · (

ug F
) = 0 (8.27)

Given regular boundary conditions, like the ones of aβ-channel, the integral of the divergence
termover the entire surface area S of the atmosphere at a fixed altitude z vanishes, by applying
Gauss’s theorem. Hence one obtains for every altitude

d

dt

∫
S
dS F = 0 (8.28)
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In particular, enstrophy

Z =
∫
S
dS

π2

2
(8.29)

is also a conserved quantity.

8.1.3 The Quasigeostrophic Enstrophy EquationWithin Linear Dynamics

At this point we begin differentiating between zonal mean and eddies (or waves).We decom-
pose streamfunction and potential vorticity via

ψ = 〈ψ〉 + ψ ′ (8.30)

π = 〈π〉 + π ′ (8.31)

where we assume that the wave part is small. Inserting this into the conservation equation
(8.14) we first obtain

∂〈π〉
∂t

+ ∂π ′

∂t
+〈ug〉∂π ′

∂x
+ u′

g
∂π ′

∂x
+〈vg〉∂〈π〉

∂ y
+〈vg〉∂π ′

∂ y
+ v′

g
∂〈π〉
∂ y

+ v′
g
∂π ′

∂ y
= 〈D〉+ D′

(8.32)
From (8.6) and the periodic boundary conditions in x we find

〈vg〉 = 0 (8.33)

so that

∂〈π〉
∂t

+ ∂π ′

∂t
+ 〈ug〉∂π ′

∂x
+ v′

g
∂〈π〉
∂ y

+ u′
g
∂π ′

∂x
+ v′

g
∂π ′

∂ y
= 〈D〉 + D′ (8.34)

Averaging this equation yields

∂〈π〉
∂t

+
〈
u′
g
∂π ′

∂x
+ v′

g
∂π ′

∂ y

〉
= 〈D〉 (8.35)

Taking the difference (8.34)–(8.35) and neglecting all nonlinear terms in the wave quantities
yields

∂π ′

∂t
+ 〈ug〉∂π ′

∂x
+ v′

g
∂〈π〉
∂ y

= D′ (8.36)

Multiplying by π ′, and averaging afterward, leads to the enstrophy equation

∂

∂t

〈
π ′2

2

〉
= −〈v′

gπ
′〉∂〈π〉

∂ y
+ 〈π ′D′〉 (8.37)
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Here we have used 〈
π ′ ∂π ′

∂x

〉
=

〈
∂

∂x

π ′2

2

〉
= 0 (8.38)

Obviously the density of enstrophy π ′2/2 is a measure of wave activity. Thus the enstrophy
equation has two important consequences:

• Typically 〈π ′D′〉 is a sink. Therefore growth of waves is only possible if

〈v′
gπ

′〉∂〈π〉
∂ y

< 0 (8.39)

Hence, the meridional flux of the potential vorticity must be directed against the meri-
dional gradient of mean potential vorticity.

• In the absence of non-conservative processes, i.e., if D′ = 0, the wave amplitude is only
steady if

〈v′
gπ

′〉 = 0, (8.40)

i.e., if the flux of the potential vorticity vanishes. Onlywhen themean potential vorticity is
independent of latitude, this is not necessary. Due to the β-term in the latitudinal gradient
of the potential vorticity that is very unlikely, however.

8.1.4 Summary

In quasigeostrophic theory, not only energy and the integral of quasigeostrophic potential
vorticity π are conserved, but also the integral of arbitrary functions of π . An important
example is enstrophy, with its density π2/2. The enstrophy of eddies, i.e., deviations from
the zonal mean, is a measure of their amplitude. Within the linear approximation, holding
at weak amplitudes, eddy enstrophy only changes if non-conservative processes act or if
there is a meridional flux of potential vorticity. It increases (decreases) eddy enstrophy
when it is directed against (into) the direction of the meridional gradient of zonal-mean
quasigeostrophic potential vorticity .

8.2 Rossby-Wave Propagation

A very useful tool for the conceptional understanding of wave dynamics is WKB theory
that will first be derived here in a heuristic manner. It then finds its first application in a
discussion of Rossby-wave propagation into the middle atmosphere.
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8.2.1 Wave PropagationWithinWKBTheory

If

• the wave amplitude is small enough and furthermore
• the mean fields are changing only slowly in space and time,

the ray theory of Wentzel, Kramers, and Brillouin provides a solution of the linear equation
(8.36) with D′ = 0

∂π ′

∂t
+ 〈ug〉∂π ′

∂x
+ v′

g
∂〈π〉
∂ y

= 0 (8.41)

with far-reaching consequences for the interpretation of wave dynamics.

π ′ = ∇2
hψ

′ + 1

ρ

∂

∂z

(
ρ f 20
N 2

∂ψ ′

∂z

)
(8.42)

is the potential vorticity of the waves and

〈π〉 = ∂2〈ψ〉
∂ y2

+ f + 1

ρ

∂

∂z

(
ρ f 20
N 2

∂〈ψ〉
∂z

)
(8.43)

the potential vorticity of the zonal mean. A general solution of (8.41) is difficult, because ρ

and N 2 as well as 〈ψ〉 can have complicated space-time dependencies. In order to motivate
the solution within WKB theory we recall the properties of a Rossby wave in an isothermal
hydrostatic atmosphere with constant mean flow 〈ug〉. In this case one obtains the stream-
function

ψ ′ = ψ̂ ez/2H+i(kx+ly+mz−ωt) (8.44)

with the dispersion relation

ω = k〈ug〉 − βk

k2 + l2 + f 20
N 2m

2 + 1

4L2
di

(8.45)

Here

H = RT

g
(8.46)

is the constant scale height of the reference atmosphere. The corresponding profiles of
density and pressure are

ρ = ρ0e
−z/H (8.47)

p = p0e
−z/H (8.48)
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with fixed ground-level values ρ0 and p0. All parameters in the dispersion relation are
constants: Using (8.19) and (8.48)

θ = T

(
p00
p

)R/cp
(8.49)

yields

N 2 = g

Hθ

(8.50)

with
1

Hθ

= R

cp

1

H
(8.51)

the inverse scale height of potential temperature. Furthermore

Ldi = NH

f0
(8.52)

is the internal Rossby deformation radius, which is constant as well, and

β = ∂〈π〉
∂ y

(8.53)

is the constant gradient of the mean potential vorticity. The essential in these results is that
the parameters 〈ug〉, β, H , and N 2 are constants and that the streamfunction is

ψ ′ ∝ 1√
ρ

(8.54)

That is, it is inversely proportional to the square root of the reference density.
Motivated by the last insight we now use the ansatz

ψ ′ = ψ̃√
ρ

(8.55)

This implies no constraint, because we do not constrain ψ̃ . One then has

∂ψ ′

∂z
= 1√

ρ

(
∂ψ̃

∂z
+ ψ̃

2 H

)
(8.56)

where
1

H
= − 1

ρ

dρ

dz
(8.57)

is the inverse scale height of the reference density, given in the isothermal case by (8.46).
Moreover, one obtains
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1

ρ

∂

∂z

(
ρ f 20
N2

∂ψ ′
∂z

)

= 1√
ρ

{
d

dz

(
f 20
N2

) (
∂ψ̃

∂z
+ ψ̃

2H

)
+ f 20

N2

[
∂2ψ̃

∂z2
− ψ̃

4 H2 + ∂

∂z

(
1

2H

)
ψ̃

]}
(8.58)

Under isothermal conditions the derivatives of H and N 2 vanish. Now we assume that these
derivatives are small enough so that they can be neglected. More specifically, we assume
that H and N 2 are varying weakly enough such that

∣∣∣∣∣N 2 d

dz

(
1

N 2

)
∂ψ̃

∂z

∣∣∣∣∣ =
∣∣∣∣∣
1

N 2

dN 2

dz

∂ψ̃

∂z

∣∣∣∣∣ �
∣∣∣∣∣
∂2ψ̃

∂z2

∣∣∣∣∣ (8.59)

∣∣∣∣N 2 d

dz

(
1

N 2

)∣∣∣∣ =
∣∣∣∣ 1

N 2

dN 2

dz

∣∣∣∣ � 1

2H
(8.60)

∣∣∣∣H d

dz

(
1

H

)∣∣∣∣ =
∣∣∣∣ 1H

dH

dz

∣∣∣∣ � 1

2H
(8.61)

hold. The first condition implies that the vertical scale on which N 2 varies substantially is
significantly larger than the vertical scale on which the streamfunction of the linear solution
changes. Below we will see that

ψ̃ ∝ eimz (8.62)

Hence (8.59) is equivalent to ∣∣∣∣ 1

N 2

dN 2

dz

∣∣∣∣ � |m| (8.63)

From (8.60) and (8.61) one can see that N 2 and H only vary on a vertical scale which is
significantly larger than 2H . If (8.59)–(8.61) are satisfied, then (8.58) becomes

1

ρ

∂

∂z

(
ρ f 20
N 2

∂ψ ′

∂z

)
≈ 1√

ρ

f 20
N 2

(
∂2ψ̃

∂z2
− ψ̃

4 H2

)
(8.64)

and

π ′ ≈ π̃√
ρ

(8.65)

with

π̃ = ∇2
h ψ̃ + f 20

N 2

(
∂2ψ̃

∂z2
− ψ̃

4H2

)
(8.66)

Inserting (8.55) into (8.41) and putting all together yield

(
∂

∂t
+ 〈ug〉

)
∂π̃

∂x
+ ∂ψ̃

∂x

∂〈π〉
∂ y

= 0 (8.67)
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Up to this point we have achieved elimination of the altitude dependence of ρ and N 2 in
the equation. This does not mean that we neglect it, however. We just assume that it is
sufficiently smooth.

The remaining equation still contains the mean zonal wind and the latitudinal gradient
of the mean potential vorticity. In the isothermal case discussed above these are constants,
hence allowing plane waves as solutions. Now we assume that the fields of the mean flow
vary only negligibly over one wavelength and over one period of the wave solution. WKB
theory then uses the ansatz

ψ̃ = A(x, t)eiα(x,t) (8.68)

with A being a complex amplitude and α a (real-valued) phase.1 A plane wave has A = ψ̂

and α = kx + ly + mz − ωt . Correspondingly, the local wavenumber is defined by

k(x, t) = ∇α (8.69)

and the local frequency by

ω(x, t) = −∂α

∂t
(8.70)

Another important assumption of WKB theory is that A, k, and ω are also varying only
slightly over one wavelength or one period of the wave solution. This means that

|∇A| � |kA| (8.71)∣∣∣∣∂A∂t
∣∣∣∣ � |ωA| (8.72)

|∇ki | � |kki | (8.73)∣∣∣∣∂ki∂t

∣∣∣∣ � |kiω| (8.74)

|∇ω| � |kω| (8.75)∣∣∣∣∂ω

∂t

∣∣∣∣ � ∣∣ω2
∣∣ (8.76)

hold. Therefore one obtains, for example,

∇ψ̃ = (∇A + ikA) eiα ≈ ikAeiα = ikψ̃ (8.77)

and thus also

∇2
h ψ̃ ≈ ∇h ·

(
ikh Aeiα

)
= [

i (∇h · kh + kh · ∇h) A − |kh |2 A
]
eiα ≈ − |kh |2 Aeiα

= − |kh |2 ψ̃ (8.78)

1 It is not required here that the streamfunction is real-valued. As we will see below, real-valued
fields are obtained from superposing WKB solutions with opposite wavenumbers and with complex-
conjugate amplitudes.
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as well as
∂2ψ̃

∂z2
≈ −m2ψ̃ (8.79)

with kh = kex + ley the horizontal part of the wavenumber vector. This way one obtains

π̃ ≈ −
(
k2 + l2 + f 20

N 2m
2 + 1

4L2
di

)
ψ̃ (8.80)

Applying the WKB rules one more time yields

∂π̃

∂t
≈ −iωπ̃ (8.81)

∂π̃

∂x
≈ ikπ̃ (8.82)

∂ψ̃

∂x
≈ ikψ̃ (8.83)

Inserting (8.80)–(8.83) into (8.67) finally yields

i
(
ω − k〈ug〉

) (
k2 + l2 + f 20

N 2m
2 + 1

4L2
di

)
ψ̃ + ikψ̃

∂〈π〉
∂ y

= 0 (8.84)

Therefore the dispersion relation for Rossby waves is

ω = k〈ug〉 −
k
∂〈π〉
∂ y

k2 + l2 + f 20
N 2m

2 + 1

4L2
di

(8.85)

Note that this is a relation between the local space-time frequency and the local wave
number. Because the mean flow and the reference atmosphere are space dependent and the
mean flow can even be time-dependent, this relation is also dependent on space and time.
We can write it abstractly as

ω = � (k, x, t) (8.86)

Here the explicit dependency on space and time is only present in the parameters 〈ug〉,
∂〈π〉/∂ y, N 2, and L2

di , but not in the wave number!
We introduce formally the group velocity

cg = ∇k� (8.87)

or, component-wise,

cgi = ∂�

∂ki
(8.88)
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From the dispersion relation, and (8.69) and (8.70), results

∂ki
∂t

= ∂2α

∂t∂xi
= − ∂ω

∂xi
= − ∂�

∂k j

∂k j
∂xi

− ∂�

∂xi
(8.89)

Using the definition of the group velocity this yields a prognostic equation for the wave
number

∂ki
∂t

+ cg · ∇ki = − ∂�

∂xi
(8.90)

Additionally, we get in a similar manner

∂ω

∂t
= ∂�

∂ki

∂ki
∂t

+ ∂�

∂t
= −cgi

∂ω

∂xi
+ ∂�

∂t
(8.91)

which results in

∂ω

∂t
+ cg · ∇ω = ∂�

∂t
(8.92)

The ray equations (8.90) and (8.92) describe the change in thewavenumber and the frequency
along a ray that moves with the local group velocity cg . These equations have interesting
symmetry properties:

• If the mean flow is invariant in the i th spatial direction, then the corresponding wave
number ki does not vary along the ray. Hence the zonal wave number k is a constant.

• If the mean flow is constant in time, then the frequency along a ray does not vary.

Finally one should note that (8.41) is a linear equation. Individual solutions can be superim-
posed linearly and yield another solution. Therefore one can compose a complex wave field
from individualWKB solutionswhich again solves (8.41). Because in the zonally symmetric
mean flow the zonal wavenumber k of an individual solution is a constant, one can write

ψ ′ = 1√
ρ

∑
k

ψ̃k = 1√
ρ

∑
k

Ak(x, t)eiαk(x,t) (8.93)

where

k = n
2π

Lx
n ∈ Z (8.94)

must hold in order for the periodicity to be satisfied in x . Furthermore

kk = ∇αk = kex + lkey + mkez (8.95)

ωk = −αk

∂t
(8.96)
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are the corresponding wavenumber vectors and frequencies, which vary in space and time,
following to (8.90) and (8.92). The prediction of the amplitudes Ak is subject of the next
section.

8.2.2 Rossby-Wave Propagation into the Stratosphere

The dispersion relation (8.85) and the corresponding ray equations (8.90) and (8.92) have
important consequences for the ability of Rossby waves to propagate in the vertical. If
applied to a zonal and climatological mean 〈u〉(y, z) of the zonal wind, here identified with
its geostrophic part 〈ug〉(y, z), the ray equations imply for along-ray variations of frequency
and zonal wavenumber

(
∂

∂t
+ cg · ∇

)
ω = 0 (8.97)

(
∂

∂t
+ cg · ∇

)
k = 0 (8.98)

That is, they are constant, and thereby also the zonal phase velocity c = ω/k. Themeridional
and vertical wavenumbers, however, do change, according to

(
∂

∂t
+ cg · ∇

)
l = −k

⎡
⎢⎢⎢⎣

∂〈u〉
∂ y

−
∂2〈π〉
∂ y2

k2 + l2 + f 20
N2

(
m2 + 1

4 H2

)

⎤
⎥⎥⎥⎦ (8.99)

(
∂

∂t
+ cg · ∇

)
m = −k

{
∂〈u〉
∂z

−
∂2〈π〉
∂ y∂z

k2 + l2 + f 20
N2

(
m2 + 1

4 H2

)

−∂〈π〉
∂ y

f 20
N2

1

N2
dN2

dz

(
m2 + 1

4 H2

)
+ 1

2 H3
dH

dz[
k2 + l2 + f 20

N2

(
m2 + 1

4 H2

)]2

}
(8.100)

where we have replaced Ldi = NH/ f0. These equations can be integrated for typical zonal-
wind climatologies, with much to learn from such an exercise. Hoskins and Karoly (1981)
and Karoly and Hoskins (1982) show results from such calculations. Among other things
they find that the meridional propagation is influenced essentially by the sphericity of the
earth’s atmosphere.
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The essential results on vertical propagation, however, can best be understood by direct
consideration of the dispersion relation, and realizing that due to 0 < m2 < ∞ the frequency
at a given meridional wave number has upper and lower limits so that

k (〈u〉 − uc) < ω = ck < k〈u〉 (8.101)

with

uc =
∂〈π〉
∂ y

k2 + l2 + 1

4L2
di

(8.102)

Here we assume ∂〈π〉/∂ y > 0. This is no serious limitation since the β-term usually
dominates the meridional derivative of the quasigeostrophic potential vorticity. Figure8.1
shows the dependence on vertical wavenumber for k > 0, as can be assumed without loss
of generality, together with the limits following from (8.101). The slope of the curve is the
vertical group velocity; i.e., ray propagation is upward (downward) at positive (negative)
wavenumber. It is important to realize that ray propagation is such that frequency ω = ω0

does not change, but that due to ray propagation to different (y, z) the upper and lower
bounds k〈u〉 and k(〈u〉 − uc) do change. Hence a ray moves on the ω curve in such a way
thatω = ω0. This also implies a variation of vertical group velocity, leading to corresponding
variations of those bounds. Two interesting cases occur:

Wave Reflection
Assume that a ray propagates upward, i.e., m > 0, and that the zonal-mean zonal wind
increases with altitude, i.e., ∂〈u〉/∂z > 0, as is the case, e.g., in the winter stratosphere.
Then the lower bound k(〈u〉 − uc) will typically increase so that m must decrease. In case
it crosses the zero threshold m = 0, the vertical group velocity changes its sign and the ray

cgz → 0 cgz → 0

cgz < 0

(ck)0 = const.

ω = ck

m

cgz =
∂ω
∂m

> 0

Strahlenrays

k ( u  – uc)

k u

Fig. 8.1 Dependence of Rossby-wave frequency on vertical wavenumber, together with its extrema
according to (8.101), assuming k > 0.
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changes its direction of vertical propagation so that k(〈u〉 − uc) will begin to decrease. An
analogous scenario would be downward propagation of a Rossby wave, with m < 0, into
regions of increasing zonal-mean zonal wind, i.e., ∂〈u〉/∂z < 0, leading just the same way
to a change in propagation direction at a reflection point where the zero threshold m = 0 is
crossed.

Critical Lines
Assume now that a ray propagates upwards, i.e.,m > 0, and that the zonal-mean zonal wind
decreases with altitude, i.e. ∂〈u〉/∂z < 0, as is typical in the summer stratosphere. Then
the upper bound k〈u〉 decreases so that m increases. In case the Rossby wave approaches
a line where 〈u〉 = c the vertical wavenumber will grow without bounds. Typically the
corresponding strong gradients in the wave field lead to nonlinear dissipation. A critical line
will tend to act as a wave sink. Likewise there is the analogous case of downward Rossby-
wave propagation into regions with decreasing wind, i.e., ∂〈u〉/∂z > 0, so that again a
critical line with 〈u〉 = c can be approached.

Consequences for the Propagation of Rossby Waves into the Stratospere
A critical reader might have realized that the basic assumptions of WKB theory do not
hold anymore when Rossby waves are reflected, since then the vertical wavelength diverges.
Close to critical lines care is at place as well. Nonetheless, WKB keeps its validity at
least qualitatively. We therefore use it here and note first that synoptic-scale Rossby waves,
e.g., due to baroclinic instability, are hardly able to propagate into the stratosphere. This is
because uc becomes very small if the zonal wavenumber k is large. Take an example: In
midlatitudes the meridional gradient of potential vorticity is approximated well by that of
planetary vorticity, i.e., ∂〈π〉/∂ y ≈ β = (2�/a) cosφ0 ≈ 1.6 · 10−11m−1s−1. Assuming
Ldi ≈ 1000km, one obtains with this, a typical synoptic-scale zonal wavenumber k =
2π/(1000km) and l = 0 the estimate uc ≈ 0.4m/s. Hence a synoptic-scale Rossby wave,
initially in the extremely narrow frequency band 〈u〉 − uc < c < 〈u〉, will most inevitably
approach in its vertical propagation reflection points and critical lines.

The situation differs for planetary Rossby waves. k = 2π/(10000km), e.g., leads to
uc = 25m/s, and in the limit k → 0 one obtains uc → 64m/s. Hence, the frequency band
allowed for long planetary waves is much broader so that their vertical propagation into the
stratosphere is possible. This is the case especially in winter, while in summer planetary
Rossby waves will typically be absorbed at critical lines. Most of these waves are stationary,
with c ≈ 0, because they are typically due to the land–sea contrast or forced by continental
orography. Whenever they approach a critical line where 〈u〉 ≈ 0, they will be absorbed. In
summer this is nearly unavoidable, because the zonal-mean zonal wind changes its direction
in the lower stratosphere (Fig. 8.2). The seasonal dependence of planetary waves in the
stratosphere is illustrated in Fig. 8.3, where the daily-mean eddy geopotential is shown on
the 1-mb level for a typical northern-hemisphere winter and summer day each. Clearly there
are virtually no planetary waves on the respective summer side of the stratosphere.
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Fig. 8.2 Zonal-wind climatology in the lower and middle atmosphere (Randel et al. 2004).

8.2.3 Summary

The propagation of Rossby waves through a spatially and time-dependent zonal-mean atmo-
sphere is captured well, at least on the qualitative level, by WKB theory.

• It assumes that the spatial and time scales of variability of the atmosphere are large in
comparison with the corresponding eddy wavelengths and periods.The same assumption
ismadeon the scales of variationof frequency andwavenumber themselves.Moreover,we
assume small wave amplitudes. This leads to a general dispersion relation that the waves
must fulfill at all locations and times. From this follow the ray equations that predict the
variation of wavenumbers and frequency along rays parallel to the instantaneous group
velocity. In a zonal-mean atmosphere the zonal wavenumber is invariant. In case the
atmosphere is time-independent, frequency does not change either.

• Vertical wave propagation is influenced considerably by critical lines and reflection
lines. The vertical wavenumber diverges at critical lines, and waves typically dissipate
there by wave breaking. Reflection lines lead to a reversion of the vertical propagation
direction. Similar behavior can also be found for meridional propagation.Wave reflection
and critical lines explain why synoptic-scale waves are hardly able to propagate from
the troposphere into the stratosphere, and why planetary waves do so typically only in
winter.
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Fig.8.3 Daily average, on the 1-mb pressure level in ERA5 data (Hersbach et al. 2020), of the eddy
geopotential height (contour interval 200m, dashed lines indicating negative values) for January 1,
2010 (top panel) and July 1, 2010 (bottom).

8.3 The Eliassen–Palm Flux

The key for predicting the wave amplitudes is the Eliassen–Palm flux. We first derive it,
pointing out its relation to the meridional flux of the potential vorticity. Finally its relevance
for WKB theory wave amplitudes will be discussed.
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8.3.1 Definition

Initially we want to take a look at the wave-inducedmeridional flux of the potential vorticity.
Without zonal averaging the flux can be written, using (8.42) and (8.12),
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gπ

′ = v′
gζ

′ + v′
g

ρ

∂
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(
ρ

f0
N 2 b

′
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(8.103)
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Because of (8.6) and (8.9) the thermal-wind relation for the meridional wind is
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(8.106)

From the definition (8.12) of the relative vorticity we obtain
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Moreover, because the geostrophic wind has no divergence,
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so that
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The zonal mean gives

〈v′
gπ

′〉 = 1

ρ
∇ · F (8.112)

where

F = −ρ〈u′
gv

′
g〉ey + ρ f0

N 2 〈v′
gb

′〉ez (8.113)

is the Eliassen–Palm flux, with its divergence the meridional flux of the potential vorticity.
The meridional component of the Eliassen–Palm flux is the negative wave-induced meri-
dional flux of zonal momentum, and its vertical component is obtained from the meridional
flux of buoyancy or potential temperature.

8.3.2 The Eliassen–Palm Relationship

The relationship between the meridional flux of potential vorticity and the Eliassen–Palm
flux derived above can be used to rewrite the enstrophy Eq. (8.37) in order to facilitate the
prediction of wave amplitudes. For this purpose we assume that the meridional gradient
of the mean potential vorticity only varies on time scales that are larger than the ones
corresponding to the wave amplitudes, i.e.,
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2

/ 〈π ′2〉
2

∣∣∣∣ (8.114)

which is not a bad assumption as long as the meridional gradient of the mean potential
vorticity is dominated by the steady β-term. Dividing (8.37) by ∂〈π〉/∂ y, and taking (8.114)
and (8.112) into account, one obtains

∂A
∂t

+ ∇ · F = D (8.115)

with

A = ρ〈π ′2/2〉
∂〈π〉/∂ y (8.116)

the wave-action density and

D = ρ〈D′π ′〉
∂〈π〉/∂ y (8.117)

the corresponding non-conservative sink or source. The integral of wave-action density,
wave action, is conserved, i.e.,

d

dt

∫
dydzA = 0 (8.118)
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if D = 0 and the normal components of the Eliassen–Palm flux vanish at the boundaries of
the integration domain. This is fulfilled for the case of the β-channel, where

y = 0, Ly : ρ〈u′
gv

′
g〉 = 0 (8.119)

z = 0, ∞ : ρ f0
N 2 〈v′

gb
′〉 = 0 (8.120)

The meridional boundary conditions follow from the zero normal flow there, the upper
boundary condition from the zero limit of the reference-atmosphere density, and the
lower boundary condition from the zonal mean of (8.21) without friction and heating, if
∂〈b〉/∂t |z=0 = 0. Note that there is no similar conservation law for the wave part of energy
and enstrophy, i.e.,

d

dt

∫
dydz

1

2
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N 2

〉

= 0 (8.121)

d

dt

∫
dydz

1

2

〈
π ′2〉 
= 0 (8.122)

not even in the conservative case! This is due to the fact that waves and mean flow can
exchange energy and enstrophy. The influence the mean flow has on the wave enstrophy
can be read directly from the enstrophy equation. An exchange of energy occurs, e.g., in the
context of a baroclinic instability.

8.3.3 Wave Action and Eliassen–Palm FluxWithinWKBTheory

The relation between thewave-action density and theEliassen–Palmflux requires smallwave
amplitudes. If one also assumes scale separation in the spirit ofWKB, further simplifications
emerge that shed more light on the meaning of both quantities.

We begin with the representation (8.93) of the wave streamfunction in the context of
WKB theory. Because every zonal wavenumber

k = ∂αk

∂x
(8.123)

is invariant in space and time, one can write the phase

αk(x, t) = kx + βk(y, z, t) (8.124)

Then the streamfunction becomes

ψ ′ = 1√
ρ

∑
k

Ake
i(kx+βk ) (8.125)
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It is real-valued so that

1√
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∑
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Ake
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∑
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A∗
ke

−i(kx+βk ) = 1√
ρ

∑
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A∗−ke
i(kx−β−k )

(8.126)
Hence we obtain the identities

A−k = A∗
k (8.127)

β−k = −βk (8.128)

and furthermore

l−k = ∂β−k

∂ y
= −∂βk

∂ y
= −lk (8.129)

and likewise

m−k = −mk (8.130)

ω−k = −ωk (8.131)

These results shall be used in reformulating wave-action density and Eliassen–Palm flux.
From the relations (8.65) and (8.80), the latter holding separately for each k, one can see

that the potential vorticity of the waves is
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with
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so that
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For reasons of simplicity2 we now assume that the amplitudes Ak do not depend on x . One
obtains
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But due to (8.94) one has 〈
ei(k+k′)x

〉
= δk′,−k (8.136)

so that

〈π ′2〉 = 1

ρ
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πke
iβkπ−ke
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2 A corresponding generalization is possible.



322 8 The Interaction Between RossbyWaves and the Mean Flow

Using (8.127)–(8.130), which can also be written

π−k = π∗
k (8.138)

one obtains
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Inserting this into the definition (8.116) yields

A =
∑
k

Ak (8.140)

Ak = 1

2∂〈π〉/∂ y

(
k2 + l2k + f 20

N 2m
2 + 1

4L2
di

)2

|Ak |2 (8.141)

That is, the wave-action density can be written as a sum of contributions from the individual
WKB solutions.

It can be expected that the corresponding prognostic Eq. (8.115) could be used for pre-
dicting the wave amplitudes. In order to do so the Eliassen–Palm flux has to be rewritten
first. We begin with the meridional component. For the meridional momentum flux used in
this expression the components of the geostrophic wind are required. Using (8.125) those
are, neglecting all slow variations of the amplitude,
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Analogous to the calculation for (8.139) one obtains

〈u′
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′
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ρ

∑
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and thus, using (8.113),
Fy =

∑
k

|Ak |2 klk (8.145)

It is now important that the meridional component of the group velocity is, using (8.85) and
(8.88),

cgy,k = ∂ωk
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Comparing this with (8.140) one finally obtains

Fy =
∑
k

Fy,k (8.147)

with
Fk,y = cgy,kAk (8.148)

That is, the meridional Eliassen–Palm flux is the sum of the meridional fluxes of the wave-
action density of the contributing WKB components. These are given by the product of the
meridional group velocity with the wave-action density.

A similar result can be obtained for the vertical flux. Here we need the meridional
buoyancy flux, and there the buoyancy fluctuations. Due to (8.9) those are approximately
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= i f0√
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Together with (8.143) this leads, in a manner similar to the derivation of (8.139), to
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With (8.113) one obtains

Fz = f 20
N 2

∑
k

kmk |Ak |2 (8.151)

Moreover, due to (8.85) and (8.88), the vertical component of the group velocity is

cgz,k = ∂ωk
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k2 + l2k + f 20

N 2m
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4L2
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so that
Fz =

∑
k

Fk,z (8.153)

with
Fk,z = cgz,kAk (8.154)

Hence also the vertical component of the Eliassen–Palm flux is the sum of the corresponding
fluxes of the wave-action density of the contributing WKB components, which themselves
are a product of meridional group velocity and wave-action density. Wave-action density is
transported with its group velocity, and the corresponding flux is the Eliassen–Palm flux. In
summary, one finds within WKB theory



324 8 The Interaction Between RossbyWaves and the Mean Flow
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(8.156)
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It should be stressed that, due to the linearity of the dynamics, the individual WKB com-
ponents are not coupled. Thus it is possible to predict the amplitude of every individual
component independently from the amplitudes of the other components, by considering
only the desired component in the equations above; i.e., one solves

∂Ak

∂t
+ ∇ · F k = Dk (8.158)

where Dk is the contribution of the zonal wavenumber k to D.

8.3.4 Summary

The key to an understanding of the development of the Rossby-wave amplitudes, within
linear theory, is given by the Eliassen–Palm flux.

• The meridional flux of potential vorticity agrees with the Eliassen–Palm flux divergence.
• In the conservative case, a change in the wave-action density is due to Eliassen–Palm

flux divergence or convergence. Hence its volume integral is conserved, under regular
conditions. There are no such conservation theorems forwave energy andwave enstrophy,
because waves and mean flow exchange energy and enstrophy.

• WithinWKB theory theEliassen–Palm flux is identical with the product of group velocity
and wave-action density.

8.4 TheTransformed EulerianMean (TEM)

Up to here the focus has been on wave dynamics and the question how waves are influenced
by the mean flow. Now we reverse the perspective and address the question how waves
influence the mean flow. In addition, the next sections also discuss the combined impact of
mean flow and waves on the average mass transport.
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8.4.1 TheTEM in the Context of Quasigeostrophy

Although the matter could be treated in a more general manner, we here focus on synoptic-
scale dynamics on the β-plane. The goal is to obtain equations for the zonal-mean flow. The
zonally averaged streamfunction has gradients in meridional as well as in vertical directions.
These two gradients, which are the zonal mean of the geostrophic zonal wind and buoyancy,
are to be studied in terms of their evolution in time. Beyond this we are also interested in
the zonal-mean circulation via 〈v〉 and 〈w〉.

To begin with, we recall that the continuity equation is to leading orders

∇ · (ρv) = 0 (8.159)

as can be seen, e.g., from the contributions of O(1) and O(Ro) in (6.58). Its zonal mean
then is

∇ · (ρ〈v〉) = 0 (8.160)

where both 〈v〉 and 〈w〉 are ageostrophic to leading order! Subtracting this from (8.159)
yields

∇ · (
ρv′) = 0 (8.161)

Next we consider the zonal-momentum equation

∂u

∂t
+ (v · ∇) u − f v = − 1

ρ

∂ p

∂x
+ F (8.162)

where F comprises all non-conservative forces, in particular friction. The corresponding
zonal mean is

∂〈u〉
∂t

+ 〈(v · ∇) u〉 − f 〈v〉 = 〈F〉 (8.163)

with
〈(v · ∇) u〉 = (〈v〉 · ∇) 〈u〉 + 〈(

v′ · ∇)
u′〉 (8.164)

Here the mean-flow contribution is

(〈v〉 · ∇) 〈u〉 = 〈v〉∂〈u〉
∂ y

+ 〈w〉∂〈u〉
∂z

(8.165)

Using the zonal mean of the relative vorticity

〈ζ 〉 =
〈
∂v

∂x
− ∂u

∂ y

〉
= −∂〈u〉

∂ y
(8.166)

one can rewrite this as

(〈v〉 · ∇) 〈u〉 = −〈ζ 〉〈v〉 + 〈w〉∂〈u〉
∂z

(8.167)
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The eddy part is, using (8.161),
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Inserting (8.167) and (8.168) into (8.165) yields

〈(v · ∇) u〉 = −〈ζ 〉〈v〉 + 〈w〉∂〈u〉
∂z

+ ∂
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〈
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〈
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Thus the zonal mean of the zonal momentum equations becomes

∂〈u〉
∂t

− (〈ζ 〉 + f ) 〈v〉 + 〈w〉∂〈u〉
∂z

= − ∂

∂ y
〈u′v′〉 − 1

ρ

∂

∂z
〈ρu′w′〉 + 〈F〉 (8.170)

In synoptic scaling not all terms are equally large. In order to see this, we recall that the
synoptic-scale horizontal wind can be expanded

u = U
(
û0 + Ro û1 + O

(
Ro2

))
(8.171)

v = U
(
v̂0 + Ro v̂1 + O

(
Ro2

))
(8.172)

where as before U is a typical horizontal-wind scale, and Ro = U/ f0L � 1 the Rossby
number, with L the horizontal length scale. ûi and v̂i have no dimension and are allO(1). The
non-dimensional geostrophic meridional wind can be calculated from the non-dimensional
streamfunction ψ̂ via

v̂0 = ∂ψ̂

∂ x̂
(8.173)

with x̂ = x/L being the non-dimensional coordinate in zonal direction. Therefore one has

〈v̂0〉 = 0 (8.174)

and thus

〈u〉 = O (U ) (8.175)

〈v〉 = O (RoU ) (8.176)

Moreover, we have seen in the derivation of quasigeostrophic theory that the vertical wind
is

〈w〉 = O
(
Ro

H

L
U

)
(8.177)

where H is the synoptic vertical length scale. For the planetary vorticity we have derived
from L/a = O(Ro) that

f = f0 [1 + O(Ro)] (8.178)
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while for the relative vorticity one has

〈ζ 〉 = O
(
U

L

)
(8.179)

Invoking as time scale the advective time scale T = L/U , one hence obtains the following
for the different terms in the zonal-mean zonal-momentum equation

∂〈u〉
∂t

= O
(
U 2

L

)
(8.180)

(〈ζ 〉 + f ) 〈v〉 = f0〈v〉 + O
(
Ro

U 2

L

)
(8.181)

f0〈v〉 = O
(
U 2

L

)
(8.182)

〈w〉∂〈u〉
∂z

= O
(
Ro

U 2

L

)
(8.183)

∂

∂ y
〈u′v′〉 = O

(
U 2

L

)
(8.184)

1

ρ

∂

∂z
〈ρu′w′〉 = O

(
Ro

U 2

L

)
(8.185)

One therefore finds in good approximation

∂〈u〉
∂t

− f0〈v〉 = − ∂

∂ y
〈u′v′〉 + 〈F〉 (8.186)

On the other hand the entropy equation

Dθ

Dt
= qθ

cpT
(8.187)

can be rewritten, using the decomposition

θ = θ(z) + θ̃ (x, y, z, t) (8.188)

as a buoyancy equation
Db

Dt
+ N 2w

(
1 + θ̃

θ

)
= Q (8.189)

with

Q = gqθ

cpT θ
(8.190)

In synoptic scaling
θ̃

θ
= O(Ro2) (8.191)
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so that the buoyancy equation becomes in good approximation

Db

Dt
+ N 2w = Q (8.192)

The corresponding zonal mean derived in the sameway as the zonal-mean zonal-momentum
equation is

∂〈b〉
∂t

+ 〈v〉∂〈b〉
∂ y

+
(
N 2 + ∂〈b〉

∂z

)
〈w〉 = − ∂

∂ y
〈v′b′〉 − 1

ρ

∂

∂z
〈ρw′b′〉 + 〈Q〉 (8.193)

Again, not all terms are in synoptic scaling of the same order of magnitude. To see this we
note that from (8.191)

b = gO(Ro2) (8.194)

Furthermore, in the derivation of quasigeostrophic theory we have assumed

1

θ

dθ

dẑ
= O(Ro) (8.195)

so that

N 2 = g

θ

dθ

dz
= g

H

1

θ

dθ

dẑ
= g

H
O(Ro) (8.196)

This results in the following scale estimates in the zonally averaged buoyancy equation

∂〈b〉
∂t

= O
(
Ro2 g

U

L

)
(8.197)

〈v〉∂〈b〉
∂ y

= O
(
Ro3 g

U

L

)
(8.198)

N 2〈w〉 = O
(
Ro2 g

U

L

)
(8.199)

〈w〉∂〈b〉
∂z

= O
(
Ro3 g

U

L

)
(8.200)

∂

∂ y
〈v′b′〉 = O

(
Ro2 g

U

L

)
(8.201)

1

ρ

∂

∂z
〈ρw′b′〉 = O

(
Ro3 g

U

L

)
(8.202)

Hence we can write in good approximation

∂〈b〉
∂t

+ N 2〈w〉 = − ∂

∂ y
〈v′b′〉 + 〈Q〉 (8.203)
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It is important to note that the two zonal-mean Eqs. (8.186) and (8.203) are not independent
from each other, because the zonal averages of the zonal wind and buoyancy are linked by
the thermal-wind relation

∂〈u〉
∂z

= − 1

f0

∂〈b〉
∂ y

(8.204)

Provided the wave fluxes, heating, and friction are given, (8.160), (8.186), (8.203), and
(8.204) determine all three components of 〈v〉 and 〈b〉.

Moreover, themean continuity Eq. (8.160) combinedwith theHelmholtz theorem implies
that there is a mass streamfunction ψm so that

〈v〉 = − 1

ρ

∂ψm

∂z
(8.205)

〈w〉 = 1

ρ

∂ψm

∂ y
(8.206)

The product of the mean flow and density, the mean mass flux, follows the isolines of the
mass streamfunction in a way, such that the flow circulates clockwise around a maximum
and counterclockwise around a minimum. A typical example is depicted in Fig. 8.4.

The direct zonal mean of meridional and vertical wind is the so-called Eulerian mean.
For various reasons, applying this type of averaging has proven to be impractical:

• Steady solutions of the mean buoyancy Eq. (8.203) imply, e.g.,

+ – + –

z

y

Fig.8.4 Anexample for the relation between themass streamfunction and the zonal-mean circulation.
Themeanflow follows the isolines of themass streamfunction in such away that it circulates clockwise
around a maximum and counterclockwise around a minimum.
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Fig.8.5 Latitude–Altitude distribution of the photochemical ozone source in spring. Reprinted from
(1994) with permission of Cambridge University Press.

〈w〉 = − 1

N 2

(
∂

∂ y
〈v′b′〉 − 〈Q〉

)
(8.207)

so that even without heating one obtains rising and sinking air masses. This motion is
driven only by waves. In many cases it is more useful to express the averaged dynamics
in a way so that the wave-driven part does not appear explicitly.

• Furthermore, the mean meridional and vertical mass transport, for example, of arbitrary
tracers, is not represented by the Eulerian mean of the meridional circulation. As an
example we show in Figs. 8.5 and 8.6 for stratospheric ozone its source distribution and
the climatological ozone distribution itself, while Fig. 8.7 shows the Eulerian mean of
the meridional circulation. Notably the source is in the tropics, whereas the maximum
density of ozone is to be found in the polar regions. The mean circulation from Fig.8.7
cannot explain this discrepancy.

As a remedy for the first issue we introduce a residual streamfunction3

ψ∗ = ψm + ρ

N 2 〈v′b′〉 (8.208)

so that

N 2〈w〉 + ∂

∂ y
〈v′b′〉 = N 2 1

ρ

∂ψ∗

∂ y
(8.209)

3 Here the asterisk does not indicate the complex conjugate.
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Fig. 8.6 Annual cycle of the latitudinal distribution of the vertically and zonally averaged ozone.
Reprinted from (1995) with permission from Elsevier.
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Fig.8.7 Latitude–Altitude distribution of themass streamfunction in the Eulerianmean for thewinter
of the northern hemisphere. One can clearly see the Hadley cells in the tropics and the Ferrel cells
in mid-latitudes. The upper branch of the Ferrel cells is oriented from the poles to the equator, thus
working against the transport of ozone from the equator to the poles. Reprinted from Juckes (2001).
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The corresponding residual-mean circulation is then defined as

〈v〉∗ = − 1

ρ

∂ψ∗

∂z
= 〈v〉 − 1

ρ

∂

∂z

〈
ρ

N 2 v′b′
〉

〈w〉∗ = 1

ρ

∂ψ∗

∂ y
= 〈w〉 + 1

N 2

∂

∂ y
〈v′b′〉

(8.210)

(8.211)

for which

∇ · (
ρ〈v〉∗) = 0 (8.212)

Substituting 〈v〉 in (8.186) one obtains the interesting result
∂〈u〉
∂t

− f0〈v〉∗ = − ∂

∂ y
〈u′v′〉 + 1

ρ

∂

∂z

〈
f0

ρ

N 2 v′b′
〉
+ 〈F〉

= 1

ρ
∇ · F + 〈F〉 = 〈

v′π ′〉 + 〈F〉 (8.213)

In the transformed representation the Eliassen–Palm flux divergence is the wave forcing of
the mean flow! Substituting as well the mean vertical wind in the buoyancy equation finishes
the derivation of the mean equations of motion in the representation of the transformed
Eulerian mean (TEM).

∂〈u〉
∂t

= f0〈v〉∗ + 〈v′π ′〉 + 〈F〉
∂〈b〉
∂t

= − N 2〈w〉∗ + 〈Q〉

(8.214)

(8.215)

Given the wave fluxes, heating and friction, these determine together with (8.212) and
(8.204) the residual-mean circulation in 〈v〉∗ and 〈w〉∗ and the zonal means of zonal wind
and buoyancy. In this representation, a steady (residual) mean vertical wind is only due to the
zonal-mean heating. What remains to be shown is that the residual-mean circulation repres-
ents the mean mass transport. For this purpose we will define in the following two chapters
the mass-weighted mean circulation and then discuss its connection with the residual-mean
circulation.

8.4.2 TheMass-Weighted Circulation in Isentropic Coordinates

The definition of the mass-weighted circulation is easier in isentropic coordinates. We recall
that in these coordinates the vertical velocity

θ̇ = qθ

cpT
(8.216)
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is only induced diabatically. Because it vanishes in the absence of heating processes, inclu-
ding frictional heating and heat conduction, mass transport without heating in isentropic
coordinates is purely horizontal. Therefore the continuity equation has the form

∂σ

∂t
+ ∇ · (uσ) = Hθ (8.217)

in which the right-hand side

Hθ = − ∂

∂θ

(
σ θ̇

)
(8.218)

vanishes if there is no heating. The thickness

σ(x, y, θ, t) = − 1

g

∂ p

∂θ
(8.219)

is a measure for the mass per area, at a given horizontal location and between two adja-
cent isentropic layers with potential temperature θ and θ + dθ . This can be understood by
inspecting the hydrostatic relation

∂ p = −gρ∂z (8.220)

whence

σ = ρ
∂z

∂θ
(8.221)

wherein dm = ρdz is the mass per area that hence can also be written

dm = σdθ (8.222)

Now we consider the zonal mean of the continuity equation,

∂〈σ 〉
∂t

+ ∂

∂ y
〈vσ 〉 = 〈Hθ 〉 (8.223)

or
∂〈σ 〉
∂t

+ ∂

∂ y
(〈v〉〈σ 〉) = − ∂

∂ y
〈v′σ ′〉 + 〈Hθ 〉 (8.224)

If the Eulerian mean 〈v〉 of the meridional velocity were suitable for the description of the
transport of the zonally averaged mass, the right-hand side would have not contributed in the
absence of heating. This is obviously not the case, due to an eddy contribution termed Stokes
drift. In the effective mass-weighted transport velocity this must be taken into account. The
former is defined as

〈v〉∗ = 〈vσ 〉
〈σ 〉 = 〈v〉 + 〈v′σ ′〉

〈σ 〉 (8.225)
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so that the mean continuity equation becomes

∂〈σ 〉
∂t

+ ∂

∂ y
(〈v〉∗〈σ 〉) = 〈Hθ 〉 (8.226)

Indeed 〈v〉∗ describes the effective mass transport. In good approximation one can also use
it for the transport of arbitrary tracers.

In the steady case, e.g., when considering climatologicalmeans, themass-weighted circu-
lation can also be expressed via a mass streamfunction that is useful for diagnostic purposes.
In this case we have, with 〈θ̇〉∗ = 〈θ̇σ 〉/〈σ 〉 the mass-weighted entropy velocity,

∂

∂ y
(〈v〉∗〈σ 〉) + ∂

∂θ

(〈θ̇〉∗〈σ 〉) = 0 (8.227)

Hence there must be a mass streamfunction ψ∗ so that

〈v〉∗ = − 1

〈σ 〉
∂ψ∗
∂θ

(8.228)

〈θ̇〉∗ = 1

〈σ 〉
∂ψ∗
∂ y

(8.229)

8.4.3 The Relation Between the Residual Circulation and the
Mass-Weighted Circulation

The demonstration of the approximate identity between residual and mass-weighted circu-
lation requires a transformation from the isentropic coordinates defining the mass-weighted
circulation to the geometric z-coordinate that we have used for defining the residual cir-
culation. It turns out to be helpful to first transform the mass-weighted circulation in an
intermediate step to pressure coordinates and move from there to the geometric represen-
tation. For this purpose we first define for an arbitrary variable X , given in isentropic or
pressure coordinates, the isentropic zonal mean

〈X〉�(θ) = 1

Lx

∫ Lx

0
dx X (x, θ) (8.230)

and the isobaric mean

〈X〉P (p) = 1

Lx

∫ Lx

0
dx X (x, p) (8.231)

where we suppress for better readability the dependence on y and t , as will be the case
throughout this chapter. The mass-weighted mean meridional velocity is in this notation

〈v〉∗(θ) = 〈v〉�(θ) +
[ 〈v′σ ′〉�

〈σ 〉�
]

(θ) (8.232)
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Let now 〈p〉�(θ) be the isentropic zonal-mean pressure so that the total pressure can be
expressed in isentropic coordinates via

p(x, θ) = 〈p〉�(θ) + η (x, θ) (8.233)

Here η is the field of pressure deviations from the isentropic mean. Hence

〈X〉�(θ) = 1

Lx

∫ Lx

0
dx X [x, p (x, θ)] = 1

Lx

∫ Lx

0
dx X [x, 〈p〉�(θ) + η (x, θ)]

≈ 1

Lx

∫ Lx

0
dx

{
X [x, 〈p〉�(θ)] + ∂X

∂ p
[x, 〈p〉�(θ)] η (x, θ)

}
(8.234)

The first part of this integral already yields a mean in pressure coordinates. In order to
achieve this also for the second part we need η in pressure coordinates as well; with this
goal we first note that

θ = θ [x, p(x, θ)] = θ [x, 〈p〉�(θ) + η (x, θ)]

≈ θ [x, 〈p〉�(θ)] + ∂θ

∂ p
[x, 〈p〉�(θ)] η (x, θ) (8.235)

We have in pressure coordinates

θ(x, p) = 〈θ〉P (p) + θ ′(x, p) (8.236)

where θ ′ is small as long as η is small. Inserting this into the second term in (8.235), and
neglecting all products of small terms, yields

θ ≈ θ [x, 〈p〉�(θ)] + ∂〈θ〉P
∂ p

(〈p〉�) η (x, θ) (8.237)

Due to 〈η〉� = 0 averaging of this equation yields

θ ≈ 〈θ〉P [〈p〉�(θ)] (8.238)

Inserting this into (8.235) we finally obtain

η(x, θ) ≈ 〈θ〉P [〈p〉�(θ)] − θ [x, 〈p〉�(θ)]
∂〈θ〉P
∂ p

[〈p〉�(θ)]
= − θ ′ [x, 〈p〉�(θ)]

∂〈θ〉P
∂ p

[〈p〉�(θ)]
(8.239)

which, inserted into (8.234), leads to

〈X〉�(θ) ≈
[
〈X〉P −

〈
θ ′∂X/∂ p

〉
P

∂〈θ〉P/∂ p

]
[〈p〉�(θ)] =

[
〈X〉P −

〈
θ ′∂X ′/∂ p

〉
P

∂〈θ〉P/∂ p

]
[〈p〉�(θ)]

(8.240)
and hence also
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〈v〉�(θ) ≈
[
〈v〉P −

〈
θ ′∂v′/∂ p

〉
P

∂〈θ〉P/∂ p

]
[〈p〉�(θ)] (8.241)

Now turn to the Stokes drift entering (8.232). From (8.239) and (8.233) follows

∂ p

∂θ
(x, θ) = ∂〈p〉�

∂θ
(θ) − ∂

∂ p

(
θ ′

∂〈θ〉P/∂ p

)∣∣∣∣
[x,〈p〉�(θ)]

∂〈p〉�
∂θ

(θ) (8.242)

and hence, with (8.219), the thickness

σ = − 1

g

∂〈p〉�
∂θ

(θ) + 1

g

∂

∂ p

(
θ ′

∂〈θ〉P/∂ p

)∣∣∣∣
[x,〈p〉�(θ)]

∂〈p〉�
∂θ

(θ) (8.243)

Obviously this can be decomposed into its mean

〈σ 〉�(θ) = − 1

g

∂〈p〉�
∂θ

(θ) (8.244)

and the fluctuation part

σ ′(x, θ) = −〈σ 〉�(θ)
∂

∂ p

(
θ ′

∂〈θ〉P/∂ p

)∣∣∣∣
[x,〈p〉�(θ)]

(8.245)

Now we insert X = v′σ ′ into (8.234) neglect all cubic products of fluctuation terms, and
obtain

〈v′σ ′〉�(θ) ≈ −〈σ 〉�(θ)

〈
v′ ∂

∂ p

(
θ ′

∂〈θ〉P/∂ p

)〉
P
[〈p〉�(θ)] (8.246)

We combine this with (8.241) in (8.232), which yields

〈v〉∗(θ) ≈
[
〈v〉P −

〈
∂v′

∂ p

θ ′

∂〈θ〉P/∂ p

〉
P

−
〈
v′ ∂

∂ p

(
θ ′

∂〈θ〉P/∂ p

)〉
P

]
[〈p〉�(θ)] (8.247)

Herewemerge the two last terms.Moreover, we note that in a hydrostatic and stably stratified
atmosphere there is an invertible mapping p = 〈p〉�(θ) so that the we obtain the estimate

〈v〉∗(p) ≈
[
〈v〉P − ∂

∂ p

〈
v′ θ ′

∂〈θ〉P/∂ p

〉
P

]
(p) (8.248)

of the mass-weighted mean meridional velocity in pressure coordinates.
For the final transformation to the geometric z-coordinate we make use of the synoptic

scaling in quasigeostrophic theory. Then

p(x, z) = p(z)
[
1 + O(Ro2)

]
(8.249)

whence in general
〈X〉P [p(z)] = 〈X〉Z (z)

[
1 + O(Ro2)

]
(8.250)
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and therefore also

∂〈X〉P
∂ p

[p(z)] = ∂z

∂ p

∂〈X〉Z
∂z

(z)
[
1 + O(Ro2)

] = − 1

gρ

∂〈X〉Z
∂z

(z)
[
1 + O(Ro2)

]
(8.251)

Moreover, we have in synoptic scaling

θ(x, z) = θ(z)
[
1 + O(Ro2)

]
(8.252)

and hence

∂〈θ〉P
∂ p

[p(z)] = − 1

gρ

∂〈θ〉Z
∂z

(z)
[
1 + O(Ro2)

] = − 1

gρ

dθ

dz
(z)

[
1 + O(Ro2)

]
(8.253)

so that (8.250) and (8.251) yield together with (8.248)

〈v〉∗ ≈ 〈v〉z − 1

ρ

∂

∂z

〈
ρ

v′θ ′

∂θ/∂z

〉 [
1 + O(Ro2)

]
(8.254)

Via (8.8) and (8.19) we finally obtain in good accuracy

〈v〉∗ = 〈v〉z − 1

ρ

∂

∂z

〈
ρ

N 2 v′b′
〉
z
= 〈v〉∗ (8.255)

under the condition that the eddies are weak in amplitude and that fluctuations in the ther-
modynamic fields are small in comparison with the corresponding reference-atmosphere
fields. The latter holds, e.g., for synoptic-scale fluctuations. The mean mass streamfunction
and residual streamfunction for the northern-hemisphere winter are shown in Figs. 8.8 and
8.9. The similarity is quite pronounced. Especially to be noted, one now has one big cell in
each hemisphere that transports mass throughout the upper troposphere and the stratosphere
from the tropics to polar latitudes. This explains the climatology of the ozone distribution.

8.4.4 Summary

The wave impact on the mean flow and the question of zonal-mean tracer transport through
the atmosphere are tightly interwoven:

• The Eulerian zonal mean of the equations of motion shows that the zonal-mean atmos-
phere is influenced by the convergence of thewave fluxes ofmomentumandbuoyancy.This
perspective, however, leads to complex cancelations, e.g., between eddy buoyancy fluxes
and heating. As opposed to that, the residual circulation in the transformed Eulerian
mean (TEM) behaves so that heating (cooling) alone will lead to upwelling (downwel-
ling) of air masses. Moreover, climatological tracer distributions, e.g., of ozone, cannot
be explained by the Eulerian mean circulation.
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Fig. 8.8 Mass streamfunction in northern-hemisphere winter Juckes (2001).
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Fig. 8.9 Streamfunction of the residual-mean circulation in northern-hemisphere winter Juckes
(2001).

• The reason for this discrepancy is the Stokes drift by which waves contribute to zonal-
mean transport. It can be calculated most easily in isentropic coordinates, where the
zonal-mean transport is weighted by the transported mass.

• One can show by corresponding transformations that the mass-weighted circulation is
nearly identical with the residual circulation.
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8.5 The Non-acceleration Theorem

The discussion up to this point suggests a general wave impact on the zonal mean of the
atmosphere. It is an import caveat, however, that this influence is only given under certain
circumstances. To show this, one begins with the conservation Eq. (8.14) for the quasi-
geostrophic potential vorticity. Because the geostrophic wind has no divergence, we can
write it in the flux form

∂π

∂t
+ ∇ · (uπ) = D (8.256)

The zonal average yields
∂〈π〉
∂t

+ ∂

∂ y
〈vπ〉 = 〈D〉 (8.257)

In synoptic scaling within quasigeostrophic theory, however, v = v′ + O(Ro) so that we
find in good approximation.

∂〈π〉
∂t

+ ∂

∂ y
〈v′π ′〉 = 〈D〉 (8.258)

Via the identity (8.112) between the Eliassen–Palm flux divergence and the meridional flux
of potential vorticity, and the Eliassen–Palm relation (8.115), one obtains

〈v′π ′〉 = 1

ρ

(
ρ〈D′π ′〉
∂〈π〉/∂ y − ∂A

∂t

)
(8.259)

which leads to
∂〈π〉
∂t

= ∂

∂ y

(
1

ρ

∂A
∂t

− 〈D′π ′〉
∂〈π〉/∂ y

)
+ 〈D〉 (8.260)

Additionally we know that

π = ∇2
hψ + f0 + β y + 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂ψ

∂z

)
(8.261)

Together with (8.5) this gives

∂

∂ y

∂〈π〉
∂t

= − ∂2

∂ y2
∂〈u〉
∂t

− 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂

∂z

∂〈u〉
∂t

)
(8.262)

Inserting this into the meridional derivative of (8.260) finally yields

[
∂2

∂ y2
+ 1

ρ

∂

∂z

(
ρ

f 20
N 2

∂

∂z

)]
∂〈u〉
∂t

= − ∂2

∂ y2

(
1

ρ

∂A
∂t

− 〈D′π ′〉
∂〈π〉/∂ y

)
− ∂〈D〉

∂ y
(8.263)

This is an elliptic equation for the time derivate of the zonal-mean zonal wind. The latter
vanishes if on the one hand the right-hand side does not contribute and on the other hand the
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zonal-mean zonal wind does not have a time derivative at the boundaries of the considered
area (i.e., the β-channel). For the right-hand side to vanish we need D = 0 and ∂A/∂t = 0.
This means there are no non-conservative forces and that the amplitudes of the waves are
steady. Furthermore we recall that we have assumed at various instances of the derivation
that the amplitudes of the waves are small so that the dynamics can be assumed to be linear.
In summary the following theorem holds:

The non-acceleration theoremofCharney andDrazin:The zonal-mean zonal wind
is steady in a domain if the following requirements are fulfilled:
• The wave amplitudes are small enough for linear dynamics to hold.
• The wave amplitudes are steady.
• There are no non-conservative forces.
• The zonal-mean zonalwind is steady on the domain boundaries. This last condition,

however, does not apply on the sphere.

Under the conditions of this theorem we also know, moreover, from (8.259) that

〈v′π ′〉 = 0 (8.264)

Using (8.214) this results in
〈v〉∗ = 0 (8.265)

because there are no non-conservative forces so that 〈F〉 = 0 . Then, however, the continuity
Eq. (8.212) also implies

〈w〉∗ = 0 (8.266)

Under the conditions of the non-acceleration theorem there is no residual circulation.Hence

〈v〉 − 1

ρ

∂

∂z

〈
ρ

N 2 v′b′
〉

= 0 (8.267)

〈w〉 + 1

N 2

∂

∂ y
〈v′b′〉 = 0 (8.268)

so that the waves exactly balance the Eulerian mean in the residual circulation. Moreover,
(8.215) tells us that under the conditions of the non-acceleration theorem

∂〈b〉
∂t

= 0 (8.269)

because the absence of non-conservative forces also implies 〈Q〉 = 0.Under the conditions
of the non-acceleration theorem the zonal-mean potential temperature is steady as well.
Therefore there generally is no interaction between waves and mean flow.
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Vice versa, a violation of the conditions of the theorem is required for the waves to
influence the mean flow! This requires, e.g., time variance of the wave amplitudes or the
influence of non-conservative processes. If, for instance,

• the wave amplitudes change in time,
• the waves break, i.e., they are dissipated by nonlinear effects, or
• friction or heating act,

then

• the mean flow can be accelerated or decelerated by the waves and
• a residual circulation exists.

These findings also help us understanding the residual circulation in the stratosphere: In the
climatological mean the zonal-mean flow is steady so that the TEM Eqs. (8.214)–(8.215)
become

〈v〉∗ = − 1

f0

(〈v′π ′〉 + 〈F〉) (8.270)

〈w〉∗ = 1

N 2 〈Q〉 (8.271)

As was to be expected, upwelling (downwelling) results from heating (cooling). For a better
understanding of the meridional circulation we use (8.112) and hence obtain

〈v〉∗ = − 1

f0

(
1

ρ
∇ · F + 〈F〉

)
(8.272)

Below the stratopause4 the Eliassen–Palm flux divergence dominates on the right-hand
side, due to Rossby waves propagating upward from the troposphere. Their group velocity
is directed upwards as well so that, due to (8.154), the vertical component of the Eliassen–
Palm flux Fz > 0 is also positive. Whenever they are absorbed in the stratosphere, e.g.,
by wave breaking near critical layers, one gets ∂Fz/∂z < 0. Likewise the absorption of
waves also propagating horizontally leads in general to a convergence of the Eliassen–Palm
flux ∇ · F < 0. Hence f0〈v〉∗ > 0 so that the residual meridional velocity in the northern
(southern) hemisphere is positive (negative); i.e., it is directed from the equator to the poles.

4 In the mesosphere higher up small-scale gravity waves play the dominant role. In the present
formulation their influence can be captured via corresponding forcing 〈F〉 
= 0 and heating 〈Q〉 
= 0.
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8.6 Recommendations for Further Reading

Good textbook coverage of wave–mean flow interactions can be found in the books of
Holton and Hakim (2013), Pedlosky (1987), and Vallis (2006), but especially worthwhile
are the texts from Andrews et al. (1987) and Bühler (2009). The latter gives an excellent
account of the generalized Lagrangianmean theory that has been introduced byAndrews and
McIntyre (1978a, b), and that forms an important part of the basis of our understanding of the
interactions between waves and mean flows, including the TEM and the non-acceleration
theorem. Fundamental publications onmeridional and vertical Rossby-wave propagation are
Charney and Drazin (1961), Hoskins and Karoly (1981), and Karoly and Hoskins (1982).
The Eliassen–Palm flux has been introduced by Eliassen and Palm (1961).
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