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The Meridional Circulation

The knowledge gathered so far, on the dynamics of the atmosphere in general and on wave-
mean-flow interaction in particular, will now be applied in a discussion of the mechanism
of the general circulation of the atmosphere. The goal is to achieve a better understanding,
beyond diagnostics, why circulation, zonal mean of wind and temperature, and waves arrange
themselves as observed. Important open questions still remain, but the theory of atmospheric
dynamics can explain a lot. We will here first sketch a few essentials of the empirical findings,
then discuss the circulation in the tropics and finally we will consider the midlatitudes.

9.1 Some Essentials of the Empirical Basis

We first consider the radiation budget. Figure 9.1 shows the latitude-dependent power density
of the zonal mean of the incoming solar radiation at the top of the atmosphere and the zonal
mean of the outgoing infrared radiation. The two profiles do not match exactly. According to
the Stefan—Boltzmann law, the outgoing atmospheric radiation L corresponds to a radiative
temperature 7' so that L = o T*. Hence, the atmospheric radiative temperature is in polar
regions warmer and in the tropics colder than expected from simple radiative equilibrium.
Obviously there must be transport processes that transport thermal energy from the tropics
to the polar regions. In addition to the oceans, the atmosphere has a considerable share in
this effect. Here the direct atmospheric latitude—altitude—circulation contributes as well as
synoptic-scale waves due to baroclinic instability.

The resulting latitude—altitude distribution of the zonally averaged potential temperature
of the troposphere, together with the zonal-mean zonal wind, is shown in Fig.9.2. Besides
the general decrease in temperature from the equator to the poles one notes a strongly
baroclinic zone in the subtropics, together with the corresponding thermal westerlies. The
jet stream, however, extends further into the midlatitudes, where it has a more barotropic
structure. Correspondingly the mid latitude surface winds are westerlies as well, while in
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the tropics and in the polar latitudes easterlies prevail. We also recall Fig. 8.7, showing the
Eulerian-mean meridional circulation for northern-hemisphere winter. One can see the two
Hadley cells in the tropics, with a much stronger cell on the winter side. This circulation
is direct, i.e., in concordance with the thermal structure so that warm air masses rise and
cold air masses sink. The Hadley circulation is flanked by the Ferrel cells that are thermally
indirect. Obviously wave driving must be of significance here. In polar latitudes one can
identify again weak direct circulation cells.

9.2 The Hadley Circulation

With regard to the circulation in the tropics we begin by discussing the zonally symmetric
dynamics without waves and with symmetry between the northern and southern hemispheres.
This is based on the work of Schneider (1977) as well as Held and Hou (1980). Next we will
address the summer—winter—asymmetry and finally also consider the influence of waves.

9.2.1 The Basic Equations of a Model Without Wave Driving

We consider the primitive equations on a sphere, where we assume that there are no waves
so that everything is zonally symmetric. Additionally we only look for steady solutions. As
important dynamical aspects, we allow for turbulent friction and diffusion in the planetary
boundary layer, and differential heating between the equator and the poles is included as
well. Therefore we have
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Fig. 9.2 The latitude-altitude distribution of the zonal mean of the zonal wind (contour interval
Sm/s, areas with >20m/s are shaded) and the potential temperature (contour interval 10K) in the
troposphere in northern-hemisphere winter (top picture) and summer (bottom) in the ERAS data

(Hersbach et al., 2020)
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3 (9
v. Vu—fv——ta o=~ (k& 9.1)
0z 0z
2 Lap 9 (.9
v. Vu+fu+—tan¢_———p+—<1<—”> 9.2)
ap ¢ 0z
19
0=-—-L ¢ 9.3)
p 0z
V. (ov) =0 (9.4)
d [ 00\ 6—6
v.ve=—(kZ (9.5)
3z 0z T

Due to the zonal symmetry we have

v 0 ad
vV-V=——+w— (9.6)
adp 0z
and for every scalar field o
V. (av) = 1 (cospva) + o ( ) 9.7
av) = ———— va) + —(wo .
0s ¢ 3¢

Furthermore we have approximated the vertical turbulent fluxes by a simple flux-gradient
relationship, with identical viscosity and diffusion coefficient K, and the heating by a rela-
xation ansatz

0= 00 (9.8)

T

where 0 (¢, z) is the potential temperature of the radiative equilibrium and t a relaxation
time within which the atmosphere would adjust, in the absence of dynamics, to the radiative
equilibrium. One can easily see that Q cools (heats) the atmosphere where the potential
temperature is above (below) 6.

For reasons of simplicity we also use the Boussinesq approximation, i.e., we assume

p=po+p 1ol <K po 9.9
p=p+p IpIKP 9.10)
0=0+6 10| < by 9.11)

where 8(z) = 6y + 80(z) with |80| < 6p. po and 6y are constants, and pg and p(z) are in

hydrostatic balance so that
i
L = —pog 9.12)
dz
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As already discussed with regard to boundary layer theory, (9.2) and (9.3) then become

u? 19P 9 v
\% —t =———+4+—(Kk— 9.13
v-Vu+ fu+ an ¢ = Py 8Z( Bz) ( )
AP H—6

0=—— 9.14
oz +g % 9.14)

with .
p=X (9.15)

0

The continuity Eq. (9.4) simplifies to
V.-v=0 9.16)

Therefore all advection terms can be rewritten as flux terms, e.g.,

V-Vu="V-(uv) 9.17)
In summary one obtains
d ad
Vo) — fo— Lrang=2 (k2 (9.18)
a 9z 0z
u2
190P a d
V. (vv)+fu+—tan¢———— —(K—v) 9.19)
adp 0z 0z
8P 6 — 6o
0= 9.20
~ % +g % (9.20)
V.v=0 9.21)
d a0 9 —0
V.v0) = — (K= E 9.22)
0z 9z T

In order to solve the equations we need boundary conditions. Atthe upper boundary (z = H)
we assume that there is no vertical motion, i.e.,

z=H: w=20 (9.23)

and therefore all vertical turbulent fluxes, for example (u'w’), vanish as well. Within the
flux-gradient approximation these are proportional to the vertical gradient of the mean fields,

e.g.,
Ww)=—K=— (9.24)

Hence one has
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At the lower boundary (z = 0) we similarly assume
z=0: w=20 (9.26)
and we also neglect the turbulent heat flux through the ground, i.e.,

00

7= — =0 9.27)
0z
However, ignoring the turbulent momentum flux is not possible. The turbulence of the
boundary layer communicates the effect of the molecular viscosity so that momentum is
transferred from the solid earth to the atmosphere. In doing so it tends to decelerate the
laminar flow. Hence we can simply assume

ou

(w'w'y = _KB_Z =—Cu (9.28)

with C > 0 a constant friction coefficient. Hence one uses

u Jv
z=0: K— =Cu K— =Cv (9.29)
0z 0z
9.2.2 A Solution Without Meridional Circulation
Without turbulent fluxes, i.e., when
K=0 (9.30)
there is a simple solution without meridional circulation,
v=w=0 9.31)
and without surface winds,
u(z=0=0 (9.32)
that is in perfect radiative balance, i.e.,
6 =0 (9.33)

This solution trivially satisfies the zonal-momentum equation, the continuity equation and
the entropy equation. The meridional and the vertical-momentum equations become

2 19P
fu+Ltang = —- 2= (9.34)
a a do

P O — 6o

0=——
0z & 6o

(9.35)
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i.e., it is hydrostatic and in a generalized geostrophic balance. The vertical derivative of
(9.34) yields, with the aid of (9.35),

9 u? 13 ( 0g—06 g 90g
< oy - —_ L% 9.36
9z (f”+ a an¢> a9 ( b ) aby 04 (9-36)

which is a generalization of the thermal-wind relation. Because there are no surface winds,
vertical integration of (9.36) yields

2 V4
20
fu+ —tang = —% dz’a—qf (9.37)
0

This quadratic equation in « has only one solution in agreement with (9.32):
1/2

u=Qacosp | [ 1- -1 (9.38)

/ 895
Q242 sin qb cos ¢

The potential temperature of the radiative equilibrium decreases from the equator to the

poles, and therefore
1 06

sin ¢ % =
For this we assume for the latitude dependence of 6 that its derivative vanishes at the equator.
Otherwise there would be a singularity at the equator so that the neglect of turbulent friction
would not be permissible. Nonetheless, this would still admit equality in (9.39). Equilibrium
temperatures of interest for us are, however, of the form (9.83) so that strict inequality holds.
Hence we have everywhere above the ground

(9.39)

395
—_ z <0 9.40
Q2a? sin ¢ cos ¢ ,/ (©-40)

and therefore
u>0 (9.41)

This is also the case at the equator, i.e., the atmosphere is rotating faster than the earth. It is
in a state of superrotation. Moreover, the zonal wind is everywhere increasing with altitude,
ie.,

—1/2

3 30
o & %k >0 (9.42)

/ aeE
3z 2Qasing 9 | Q2a2 sm¢>cos¢
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9.2.3 Hide's Theorem

One could expect that it is possible to obtain a solution for small K by using the one above
as a starting point and expanding around it. Surprisingly, however, solutions for K # 0
do not converge to superrotation without meridional circulation as K — 0. This results
from the conservation of angular-momentum. The corresponding equation can be obtained
by first rewriting the zonal-momentum Eq. (9.18), using the fact that the wind field has no
divergence,
. uv 0 u
v-Vu —2Qsingy — —tan¢p = — [ K— 9.43)
a 9z ( 9z )
Multiplying this with a cos ¢ and using (9.6) yields
vom  yom_ 2 <K8—m> (9.44)
a d¢ dz 0z 0z
with
m = Qa’ cos? ¢ +uacosg (9.45)

the mass-specific density of the axial angular-momentum component. Using (9.6) and again
the non-divergence of the wind field leads the following conservation equation

a om

0=-V.-(mv)+ — | K— (9.46)
0z 0z

Using this one can show that the maximum of m must be located at the lower boundary

of the atmosphere, and that it must be in a region with easterlies # < 0. Hence the global

maximum of m must satisfy (9.45)

mo < Qa’ (9.47)
so that
"y m — Qa? cos? ¢ - mo — Qa’® cos? ¢ - Qasin2<j> (9.48)
acos¢ acos¢ cos ¢

This requires easterlies at the equator, in contrast to superrotation. Moreover, at the ground
close to the maximum of m one must have du/dz < 0 which cannot approach (9.42) in a
continuous manner as K — 0.

We first show that the maximum cannot be located in the interior of the atmosphere, by
demonstrating that this would lead to a contradiction. If there were a maximum m in the
inner zone of the atmosphere, there would also be, in sufficient vicinity, a closed contour C,
around the location of the maximum, where the angular-momentum density has a constant
value m = mc < myg. This is shown in Fig.9.3. Integrating (9.46) over the enclosed area

Sc yields
a am
0=—/dSV-(mv)+/dSa— (K—) (9.49)
b4

0z
Sc Sc
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Fig.9.3 A closed contour C ds

with a constant

angular-momentum density

mc, that includes a maximum

mgq. The vector ds is parallel to

the outward directed normal

vector, and its magnitude

agrees with the length of the m-contour around
curve element ds m, with m.<m,

Applying Gauss’ theorem twice, and using the non-divergence of the flow field, yields for
the first integral

/dSV~(mV)=fds-mv=mcfds~v=mc/‘dSV~v=O (9.50)
Sc c (o Sc
With the help of Fig. 9.4 one can see that the second integral is

(o))

/dS— (K—m) - /dzdd)a— <K—m> - /d(ba [K—m} <0 (9501
9z 0z 0z 9z 9z 12,(4)

Sc Sc @1

Fig.9.4 A helpful z
segmentation of the contour C

in Fig.9.3, into parts that can

be written as z; (¢)

¢.1 ¢.2 ¢
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because one has

3
o <o (9.52)
0z 2

om

el ) (9.53)
az 21

with unequality dominating, if C is close enough to the maximum mg. Obviously (9.49),
(9.50), and (9.51) combined generate a contradiction, so that the maximum of m cannot be
located in the interior of the atmosphere. Likewise one can show that the maximum cannot be
located at the upper boundary. As shown in Fig. 9.5 there would be a contour C close enough
to the maximum, that together with the upper boundary would enclose the maximum. Same
way as above integration would then yield

[27) H
0 am om
0=)dS—|K— | = | dpa|K— (9.54)
9z 0z 0z 21(¢)

Sc é1

Because of the upper boundary condition (9.25) we have at z = H

om u

K— = Kacos¢ =0 (9.55)
0z 0z
so that
¢2
om
0:—/d¢aK— (9.56)
2 I219)
¢1
Because for a contour close enough to my
d
om >0 (9.57)
92 |19

with prevailing inequality, this leads to a contradiction as well.
A maximum at the lower boundary, however, is possible. According to Fig.9.6 the cor-
responding integral yields

z=H R —
AC mC<m0
C= [¢: 27 (¢)]

Fig. 9.5 A contour C with constant angular-momentum density m ¢ surrounding together with the
upper boundary a maximum m( at the upper boundary of the atmosphere
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-------- - z=0

Fig.9.6 A contour C with constant angular-momentum density m ¢, that encloses together with the
lower boundary a maximum at the lower boundary of the atmosphere

3 [ _om ” am 2@
0= /dS— (K—) = /d¢a [K—} (9.58)
0z 0z 9z |

Sc ®1

Due to the lower boundary condition (9.29) one has

am ou
K— =acospK — =acos¢pCu (9.59)
0z z=0 2 1z=0 z=0
so that
[} 5 .
0= /dqs a|lk L —acospCu (9.60)
& dz 22 z=0 |
1

This relation can be satisfied. However, because sufficiently close to the location of the

maximum
om

<0 9.61)
0z

22

with prevailing inequality, one then has close to this location # < 0. Hence in the limit
K — 0 no continuous transition to the superrotating solution would be possible.

9.2.4 A Simplified Description of the Hadley Cell

As shown by Held and Hou (1980), despite the complications discussed above there is a good
analytical approach to the Hadley circulation that can be verified using numerical solutions.
It is assumed that one cell extends from the equator up to the latitude ¢y, as sketched in
Fig.9.7. Five basic assumptions are used, to be supplemented by two additional ones later
on:

1) In the upper branch near z = H the turbulent viscosity does not affect the conservation
of angular-momentum significantly, so that one has
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Fig.9.7 Basic geometry of a Hadley cell adapted from Held and Hou (1980)
z=H: 0=V_.(mv) (9.62)

Because the flow field is non-divergent, and because of the upper boundary condition
w = 0 at z = H, this can also be written

3
2 _y (9.63)
a do
or
—y. My (9.64)
7= o a¢— .

Hence the angular-momentum is constant along the upper branch of the Hadley cell, or
z=H: m=mlg_g (9.65)

ii) Advection and turbulent friction can be neglected in the meridional momentum equa-
tion, so that the same generalized geostrophic balance holds as in the consideration of
the radiative equilibrium:

2 13P
fu+ L tang=—-2L (9.66)
a a do

iii) The zonal surface winds are significantly weaker than the winds at the upper boundary
of the Hadley cell, i.e.,

], < |ull,=p 9.67)
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iv) Turbulent diffusion does not play a decisive role in the entropy equation, so that one
can write it

V. (v0) = —@ (9.68)

v) Finally we assume that the circulation is symmetric with respect to the equator so that
no mass crosses the equator:
¢=0: v=0 (9.69)

Because turbulence effects are neglected in most places, we essentially obtain a solution for
K — 0, while solutions for K > 0 are only possible by numerical methods.

Assumption i) yields the zonal wind in the upper branch of the Hadley cell, because by
inserting (9.45) into (9.65) one obtains

z=H: Qa*cos’¢+uacose = Qa*+a uly_g (9.70)

Because air masses originate at the equator from the rising branch of the Hadley cell, one
can use assumption iii) to neglect u|y—o, leading to

sin? ¢
cos ¢

z=H : u=uy = Na 9.71)
Due to the conservation of angular-momentum, the zonal wind increases strongly from the
equator to the midlatitudes. As will be explained below, one obtains outside the Hadley cell
the above discussed radiative-equilibrium solution so that a jet stream results, as sketched in
Fig.9.8. Figure 9.9 shows the analytical jet stream solution together with numerical results
for different turbulent viscosities. The corresponding latitude—altitude dependency is shown
in Fig.9.10.

Fig.9.8 Latitude dependence u(H) +
of the zonal wind in the upper
troposphere according to the
simplified model by Held and
Hou (1980)
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Fig.9.9 Latitude dependence of the zonal wind in the upper troposphere, in the simplified model by
Held and Hou (1980), together with numerical results for different turbulent viscosities (K ), reprinted
from Held and Hou (1980)

Due to assumption ii) one has the generalized geostrophic balance (9.66). The difference
between the equilibria at the upper and lower boundaries, respectively, is

10
flu(H) —u(0)] + ? [u?(H) — u(0)] = T4 [P(H) — P(0)] 9.72)

The corresponding right-hand side is obtained by vertical integration of the hydrostatic
balance

P 6 — 6o
— = 9.73
2z ¢ % (9.73)
leading to
1 {6} — 6o
—[P(H) - PO)]=g— 9.74
H[ (H)—PO)]=¢g % 9.74)
where for an arbitrary field X
H
1
X}=— [ dzX 9.75
(1= [ a: 9.75)
0

denotes the vertical mean. Further applying the approximation (9.67) of weak surface winds
and the latitude independence of 6y gives

tang , gH 0 {6}
ik AN - i A
a

=H:
z fu+ b0 99

(9.76)
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Fig. 9.10 Numerical results for the latitude—altitude dependence of the mass streamfunction (left)
and the zonal wind (right) in the simplified model of Held and Hou (1980)
Inserting (9.71) and f = 22 sin ¢ yields

Q? in* H
_ai sin® ¢ :_g_B{G} ©.77)
2 93¢ cos? ¢ aby ¢

Integrating this relation over the latitude finally results in

{0} (@) — {6} 0 _ Q242 sin* ¢
o "~ 2gH cos’¢

(9.78)
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Up to this point the latitude ¢ of the Hadley cell as well as the mean potential temperature
{6} (0)/6y at the equator remain undetermined. Moreover, no proof has been given yet that
outside the Hadley cell one has radiative balance so that the zonal wind is given by the
corresponding thermal wind (9.38). The latter can be deduced from (9.68), because outside
of the Hadley cells v = w = 0 so that

0 =0 9.79)

Combined with (9.76) this yields the desired result. The latitude ¢ i can be found by assuming
a meaningful profile for O as well as continuity in the potential temperature so that

¢=¢u: {0} =1{0} (9-80)

Because by definition the normal velocity component vanishes at the boundaries of the
Hadley cell, see Fig. 9.11, the integration of the entropy Eq. (9.68) over the total cross
section of the cell yields, using Gauss’ theorem,

0= —%/dS(@ —0E) 9.81)
Sy
This leads to
on b
/d¢ a{f} = /d¢ a {0} (9.82)
0 0

The area under the curve of the vertically averaged potential temperature is the same as in
radiative balance, as shown in Fig.9.12. At this point an explicit spatial dependency of the
radiative-equilibrium potential temperature is needed. A good compromise between realism
and simplicity is

Fig.9.11 Velocity field within
a Hadley cell, with vanishing n
normal component at its
boundaries z=H >
«— —
n n
r A 4
z= <

0 <
$=0 Jn =4,



9.2 The Hadley Circulation 359

L

{0}

vertically averaged
potential temperature

..

equator by pole
latitude

Fig.9.12 Areaunder the curve of latitude dependence of the vertically averaged potential temperature
is the same as in radiative balance. Therefore the shaded areas agree as well. Reprinted from (Held
and Hou, 1980)

6o H 2

Here Ay is the fraction by which the potential temperature differs between equator and pole,
whereas A, describes the fractional potential-temperature change between ground and top
of the troposphere. Finally,

9E 2 . Z 1
o = 1= 3AuPasing) + A, (— - —) (9.83)

3 1
Pr(x) = zxz -3 (9.84)

is a Legendre polynomial. Because one can assume in the tropics

¢ < 1 (9.85)
(9.83) can be approximated well by
O Ay 5 z 1
— =14+ —-A Ayl ——= 9.86
=1t H¢+U(H 2) (9.86)
whence 0] A
VEL L BH A g 9.87)
6o 3

Likewise applying the low-latitude approximation to (9.78) yields

0y )0 Q% ,
% 6y  2gH

(9.88)
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Inserting both approximations into (9.80) and (9.82) leads to

0}0) Q%a* ,  {0£}(0) 2
G 2H T e Andy (9.89)
0} Q% , {5)O0) Ay ,
b 10gH"HT g 3 0 O
where 81 (0 A
Bl _y, 2n (9.91)
6o 3

The difference (9.90)—(9.89) gives

2Q%* , 2

gg_Hd)H = §AH¢%1 9.92)
or
by = \/?R 9.93)
with
_ % 9.94)

The horizontal extent of the Hadley circulation increases with the baroclinicity of the atmo-
sphere, while it decreases with the radius and the rotation frequency of the planet. For the
earth areasonable value for the baroclinicity is Ay = 1/6, whichyields ¢z =~ 20°. Inserting
(9.93) into (9.89) finally gives

01O _51© 5

RA 9.95
6o 6o 18 a ( )

The difference between the two vertical-mean potential temperatures at the equator increases
with the horizontal extent of the Hadley cell, because the strength of the circulation increases,
and hence also the heat transport.

The latitude dependence of the vertical-mean heat flux can be obtained by reconsidering
the entropy equation

d
acos¢ d¢

0 — 0k

(cos pv) + 8%(w@) = — (9.96)

Integrating this equation in the vertical and using the boundary conditions (9.23) and (9.26)
leads to
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{6} — {0k}
i / a o5 ¢ % (cos pvb) = E— 9.97)

Here (9.88), (9.87), and (9.95) yield in the low-latitude approximation

{0} —{6e} _ {0} (0) — {0} (0) 522 : 5 Q%a® 2
= A Apg — A
6 b g ARt = g RA = 5 et Mg
(9.98)
so that
H
19 I/d o) =% (2 g +92a2¢4 And? (9.99)
—_—— —_— 1 = — —_ —_ .
asp \HJ “ c \18 T 2gm 1
0
where we have used the low-latitude approximation cos¢ ~ 1. At the equator we have
v = 0 so that
| H
— | dzv6 =0 (9.100)
7],
0
Hence, integrating in latitude from O to ¢ results in
i1 5 2q?
9() Qa 5 AH 3
—— [ dzvf = — - — 9.101
aH/” r<18 BHO+ 0em? ~ 3 ? ©.101)
0

which can easily be reformulated as

— | dzv = — | = —R — =2 — — 9.102
900/ BT (3) z [¢H (m) +(¢H)] ©-102

This result, together with numerical results for K > 0, is shown in Fig.9.13.
To estimate the surface winds we need two additional basic assumptions. We first observe,
however, that the vertical integral of the continuity equation

ow
acosq{)%(coswj)—i_ 2 =0 (9.103)

with the boundary conditions (9.23) and (9.26) results in

1
e 8¢ (cos¢/dz v) =0 (9.104)
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Fig.9.13 Latitude dependence of the vertical-mean meridional heat transport. Shown are the analy-
tical result for K = 0 and numerical results for K > 0, according to Held and Hou (1980)

But according to (9.69) there is no mass flux across the equator, i.e.,

H
¢=0: /dzv:O (9.105)
0
so that one has in general
H
/dz v=0 (9.106)
0

Hence the poleward mass flux in the upper branch of a Hadley cell is balanced exactly by
the equatorward flux in the lower branch. We now specify the two additional assumptions
needed for the determination of the surface winds:

vi) Assketched in Fig.9.14 the meridional flux is confined to thin layers near the top and the
bottom boundaries. Following from the discussion above the two fluxes are of opposite
sign and equal size:

Vi = v(H)Az(H) = — V|,_o = —v(0)Az(0) (9.107)

vii) Furthermore we assume that the static stability is not altered significantly by the circu-
lation, i.e.,

Ol—p — Ol.—
Olat — Olizo _ (9.108)
6o
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Fig. 9.14 Meridional flux in the Hadley cell is confined to thin layers near the top and bottom
boundaries

These additional assumptions lead to the following estimate for the vertical-mean heat flux:

H

1 1

— / dzv0 ~ — [(VO) |, + (VO)l.o] = Ve Ay (9.109)
0

Likewise one obtains for the meridional momentum flux

H

/dzuv ~ (Vi)ley + (Vi) e ~ Ve iy (9.110)
0

where the assumption (9.67) has been used in the last step, together with the result (9.71) for
the latitude dependence of the zonal wind in the upper troposphere. Combined with (9.109)

one finds the useful result
H H

uy 1
/dwv:A—’:’@—O dz vl ©.111)
0 0

Again using the boundary conditions (9.23) and (9.26) we now take the vertical mean of the
angular-momentum conservation (9.46) and obtain

" H
1 ad am
— |cos¢p [ dzvm | = | K— 9.112)
acos ¢ d¢ 0z |o
0
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Here we can simplify the vertical mean of the meridional angular-momentum flux on the
left-hand side by inserting (9.45) and using the fact that the meridional mass flux vanishes
(9.106). Hence

H H
fdzvm:acos¢/dzuv (9.113)
0 0
On the right-hand side we use the fact that, due to the boundary conditions
am ou 0 z=H
K— =acos¢pK— = (9.114)
0z 9z acos¢pCu z=0
and hence
H
L 9 2¢/d ¢ C ul (9.115)
— | acos uv | = —acos ul,— .
acos¢ g ¢ =0
0
Therefore the surface wind is
H
S =———— d
ul,—o Cacosd 99 cos ¢>/ Zuv
0
1 ] i
- cos2¢u—M/dz V6 (9.116)
AyCacos? ¢ d¢p o
0

Finally using the results (9.102) and (9.71) yields

25 QaHA 210 t T 6
1=0: u=_DRaHAR (N 100N TP 9.117)
18 CtA, ¢H 3 \¢u 3\¢n
In Fig.9.15 the profile is shown together with numerical results for K > 0. The easterlies
in the tropics are quite prominent.

9.2.5 The Summer-Winter Asymmetry

Held and Hou (1980) have assumed symmetry with respect to the equator. This is a reasona-
ble assumption for spring and autumn, because in these seasons the radiative equilibrium is
almost symmetric. In summer and winter, however, neither the radiative-equilibrium poten-
tial temperature nor the resulting Hadley circulation are symmetric. This situation is sketched
in Fig.9.16. On the summer and winter sides the cells are bounded by the latitudes ¢ and
¢w. The common rising branch of both cells is located at latitude ¢;. Following Lindzen
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Fig.9.15 Latitude dependence of the surface winds in the tropics. The analytical result for K = 0 is
shown together with the numerical results for K > 0. Reprinted from Held and Hou (1980)

-

Py

Fig.9.16 Schematic representation of the summer—winter asymmetry of the Hadley circulation. On
the summer and winter side the cells are bounded by the latitudes ¢g (here ¢ ) and ¢y (here
¢ g ), respectively. The common rising branch of both cells is located at latitude ¢1. The latitude of
the maximum of the radiative-equilibrium potential temperature is ¢g. Reprinted from Lindzen and
Hou (1988)
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and Hou (1988), the radiative-equilibrium potential temperature is approximated by

99_1;_1+T_AH(SIH¢_SIH¢O) + Ay (E—%) (9.118)
It reaches its maximum at all altitudes at the latitude ¢9. Note that in general ¢; # ¢go. The
latitude of the rising branch is to be determined from the calculations.

The assumptions for these are the same as the ones used in the symmetric calculations
of Held and Hou (1980), assumption v) excepted. Thus we again assume conservation of
angular-momentum in the upper branch of both cells. Hence

z=H: m = m|p—g, (9.119)
Because
u(g1, H) =0 (9.120)
this leads to
Qa’ cos® ¢ 4+ uacos¢p = Qa’ cos’ b1 9.121)

or

2 2
cos — cos
= H: u—uy = aSS P 9 (9.122)
cos ¢
One should note that the resulting winds at the equator are always easterlies.

For the calculation of the distribution of the potential temperature we assume generalized
geostrophic balance, hydrostatics, and we neglect the zonal surface winds in comparison
with their counterparts in the upper troposphere. One obtains

u? Ha{o
gH 31{0}

Combined with (9.122), this leads to
Q% 9 (s> ¢ —sin’9)’  gH 9 {0)

2 3¢ cos? ¢ T aby 9 ©.124)

Integration yields

0} {0} () Q%2 (sin> ) —sin® p)°
% 6  2gH cos2 ¢

(9.125)

Finally the integration of the entropy equation without turbulent diffusion over the total area
of either of the two cells yields
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1

/ dpa({0} —{0e}) =0 (9.126)
ow

s

/ dpa((6) — (05)) = 0 ©.127)
b1

where Gauss’ theorem has been applied. Furthermore, outside of the circulation cells one
has the radiative-equilibrium solution. Continuity of potential temperature requires

{0} (ps) = {0k} (¢s) (9.128)
{0} (@w) = {0k} (Pw) (9.129)

Hence we have the four equations (9.126)—(9.129) for the four unknowns ¢g, ¢w, ¢1, and
{6} (¢1). They can only be solved numerically. Solutions for northern-hemisphere spring
and summer are shown in Fig. 9.17. Note that not only there is an asymmetry in the potential
temperature in the second case, but that there is also a significantly larger deviation from
radiative balance on the winter side. This indicates a far stronger circulation on this side.

9.2.6 The Wave-Driven Hadley Circulation

The models considered so far have different drawbacks. The neglect of the evolution in
time (beyond the seasonal cycle) as well as the neglect of the effects of turbulent viscosity
cause errors. The most important correction, however, concerns the wave forcing of the
tropical circulation, that we did not need to consider in the zonally symmetric models. In
the discussion of this aspect we extend the equations by the wave forcing. For the sake of
easier progress we then again apply appropriate approximations, so that the results to be
derived complement the findings of the models of Schneider (1977), Held and Hou (1980)
and Lindzen and Hou (1988) instead of generalizing them.

First we recall that the product of a cos ¢ with the inviscid zonal-momentum equation in
the Boussinesq approximation

du u? 1 9P
— -Vu — —t =— — 9.130
ot v Ve fut a an¢ acos¢ i ( )
yields the conservation equation for angular-momentum
om apP
— +V.(vm)=— (9.131)

at EN
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Fig.9.17 Numerical results for the vertical-mean potential temperature {#} (solid line) in northern-
hemisphere spring (top picture, ¢o = 0) and in the summer (bottom picture, ¢g = 6°), together with
the vertical mean {6} (dashed) of the radiative-equilibrium potential temperature. Reprinted from

Lindzen and Hou (1988)

Here we split all fields into zonal mean and waves

(m) +m’
V) +v
(P)+ P

m
v
P

and take the zonal mean of the equation. The result is

%-{-V%(V)(m))—l—V%m’v’) =0

Averaging the continuity equation yields

V-(v)=0

(9.132)
(9.133)
(9.134)

(9.135)

(9.136)
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so that one can write the angular-momentum equation

% +(v)-V{m) ==V - (m'V) (9.137)
or more in detail
dm)  (v) dim) omy 18 R
T+7W+<w>3_z_ acosd 0 ((mU>COS¢) 3Z<mw) (9.138)

For estimates of the magnitude of each of the contributing terms we assume, for reasons of
simplicity, synoptic scaling as in quasigeostrophic theory. First, due to (9.45) the advection
terms on the left-hand side are

d(m) o(u)
(w)—— = acos ¢ (w) (9.139)
0z 0z
%%IZ) = —acos¢ f(v) + %% (acos¢ (u)) (9.140)
with f = 2Qsin¢ = O(fp). Here
(u)y = OWU) (9.141)
(v) = O(Ro U) 9.142)
(w)y =0 (RO%U) (9.143)
whence
2
(w)%n;) =0 (Roa%) (9.144)
U2
acos¢ f(v) =0 <a7> (9.145)
(v) 8 _ U?
7@ (acos¢p (u)) = O (Roaf) (9.146)

so that one can neglect vertical advection in (9.138). Different than suggested by a compa-
rison of (9.145) and (9.146), however, we keep the total merdional advection of angular-
momentum, i.e., the term in (9.146) is not neglected! This is done on the one hand because,
especially in the tropics but also in the subtropics, the dominance of the Coriolis term in
(9.145) is less pronounced than in midlatitudes. On the other hand the term in (9.146) is
the one responsible, in the zonally symmetric case, for the impact of angular-momentum
conservation on the subtropical jet stream.

We finish the analysis of the angular-momentum Eq. (9.138) by considering the flux
terms on the right-hand side. Due to (9.45) these are
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1 1 )

a ’.7 .7
20050 99 (cos ¢ (m'v')) = acos¢£(a cos® ¢ (u'v')) (9.147)
aa—z(m’w/) =a COS¢;—Z(M/U)/> (9.148)
Herein
u' = 0OW) (9.149)
VvV = OW) (9.150)
, H

w =0 <R0ZU> (9.151)

so that 5

l a /7.7 _ U_
acos¢£(cos¢(mv))_o(a 7 ) (9.152)

2

(%(m’w’) =0 (RoaUT) (9.153)

Hence the vertical angular-momentum flux can be neglected in comparison with the hori-
zontal flux.
In summary, a reasonable approximation of the angular-momentum equation is
d(m)  (v) d(m) 1

~ _ i 17 2
ot a4 3¢ acos¢ dg (wt)acos¢) O3

The momentum flux on the right-hand side is shown both for northern-hemispheric winter
and summer in Fig.9.18. Now consider, e.g., the upper branch of the Hadley cell in the
northern hemisphere. There

(v) >0 (9.155)
and also | 5
a9 (acos> ¢ (W'v')) <0 (9.156)
Hence, in the steady case
0
lm _ (9.157)
ot
angular momentum decreases with increasing latitude, i.e.,
o(m)
— <0 (9.158)
a9

As compared to the zonally symmetric case, the jet stream is weakened by the wave for-
cing. Analogous findings hold for the southern hemisphere. A corresponding result from a
simplified climate model is shown in Fig.9.19.

Next we consider the entropy equation
0 — 6k

90
4V (V0) = —
ar+ (v0)

(9.159)



9.2 The Hadley Circulation 371

(u'v’) DJF (v'e’ )
10! | | ' . L 10!
© ig
a
ey
L 1021 - 102 1
5 |
()]
(%]
(O]
p—
T ol ¢ )
103 I T T T T ‘ 103
90°S  60°S 30°S 0  30°N 60°N 90°N 90°S 60°S 30°S 30°N 60°N 90°N
JJA JJA
' ' ' 101_
©
[a
<
L 102 - 102 4 -
5 ..@ C >
—
o
103 , ? . 4 103
90°S 60°S 30°S 0  30°N 60°N 90°N 90°S 60°S 30°S 30°N 60°N  90°N
Latitude Latltude

Fig. 9.18 Climatology of the meridional fluxes of potential temperature (right column, contour
interval 10K m/s) and zonal-momentum (left, contour interval 10 mz/sz) in northern-hemispheric
winter (top row) and summer (bottom). Shaded regions indicate negative values. Data from ERAS
(Hersbach et al., 2020)

without turbulent diffusion. Similar to the analysis of the angular-momentum equation one
can rewrite and simplify it as

a0 0)—6
; Ly oy = -v - ey - D=0
t T
_ 1t Oy 00
N acosq) 8(]) (COS¢( )) 8z<w6 ) T
N 1 0 _(0) -6k
A acosq) 8(1) (cos¢( )) — (9.160)
or even w
a(0 0)—6
U I 9.161)
t T
with a wave-modified equilibrium potential temperature
oY =0y — — 9 (cos ¢ ('6")) (9.162)

acos¢ 8(1)
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Fig.9.19 Upper-tropospheric
zonal-mean zonal wind from
simulations with a general
circulation model without
waves (top panel) and with
waves (bottom). Here u is the
wind in the upper tropopshere,
and ug the surface wind. The
wind u s due to
angular-momentum
conservation, following Held
and Hou (1980) is shown as
well. Reprinted from Vallis
(2006) with permission from
Cambridge University Press
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In the tropics of the northern hemisphere one has, however, in northern-hemisphere winter,
as shown in Fig.9.18,

82
'n’
aT&(v 0y >0 (9.163)
so that the waves enhance the latitudinal gradient of the equilibrium potential temperature,
ie. w
a0 a0
ZE TE (9.164)
d¢ d¢

Hence, the meridional circulation of the Hadley cell is enhanced by the waves. Analogous

findings hold for the southern hemisphere. Corresponding simulation results are shown in
Fig.9.20.

This can be understood further via another systematic perspective that will also be of use
below in the discussion of the Ferrel cells. We reconsider the angular-momentum equation
(9.154). Therein one has, due to (9.45),

3 (m) 3 u)

—— =acos¢ o7

9.165
a7 ( )

The meridional angular-momentum advection can be decomposed following (9.140), with
the corresponding order-of-magnitude estimates (9.145) and (9.146). Different than done

above, however, we do not keep the term in (9.146) because we want to focus on the wave
forcing. We therefore also approximate f & fj and obtain thus from the angular-momentum
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Fig.9.20 AsFig.9.19, but now for the meridional streamfunction. Reprinted from Vallis (2006) with
permission from Cambridge University Press

equation
]
% — folvy M (9.166)
with
M= 9 ((u'v)a cos? ?) (9.167)
a2cos ¢ 3¢ '

Likewise we simplify the mean entropy Eq. (9.160). Therein

0=0+6 (9.168)
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and hence, also using the non-divergence of the velocity field,

@@ + (w)d6’ + (w)@ (9.169)
a J9¢

V- ((v)(0) = (v) - V(0) = - .

According to synoptic scaling in quasigeostrophic theory

6 = O (Ro*®) (9.170)
0

d 6o
— = Ro— 171
i (9( 0H> 9.171)

and the magnitudes of the zonal-mean meridional and vertical winds can be estimated via
(9.142) and (9.143). Therefore

do
V(0 & (w)— 9.172)
Z
The product of (9.160) with g /6y hence yields
a(b) )
—— Fw)N“=J (9.173)
ot
with | ; ©) 0
8 —UE
J == — (" e 9.174
acos¢ d¢p (< U>COS¢) 6o T ( )
and B
do
N2 =32 (9.175)

T 6 dz
For reasons of simplicity we henceforth use Cartesian coordinates. Then the mean continuity
equation is

a(v)  I{w)
— 4+ ——=0 (9.176)
dy 9z
Hence there is a streamfunction ¥ so that the mean-flow fields are
d
wy =Y (9.177)
9z
d
(w) = v (9.178)
dy
Moreover, within quasigeostrophic theory one has the thermal-wind relation
d ab
foﬂ = _ob) (9.179)

0z ady
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Using all this in fpd(9.166) /dz + 9(9.173)/0y finally yields the important relationship

2 0%y

2y oM dJ
T N2

e 5 (9.180)
This is an elliptic equation for the streamfunction, holding even in the case of time-dependent
fields, but not containing any time derivatives! The mean circulation can always be determi-
ned directly from the momentum forcing M and the heating J, both including contributions
from the wave forcing.

The qualitative handling of the equation is quite intuitive. Obviously, as far as the sign is

concerned,
9% 9%y
2 2
— +N"— ~ — 9.181
f 0 822 ayz 1// ( )
because maxima (minima) are associated with negative (positive) curvature. This helps in
analyzing the impact of heat and momentum fluxes.

e One can see in Fig.9.18 that even without direct heating

—~ <0 (9.182)

because the heat flux has a minimum in the deep tropics so that 3% (v'b’) /dy? > 0. This
leads to a positive streamfunction ¥ > 0 with rising air masses in the tropics and sinking
air masses in the subtropics. This is summarized in Fig. 9.21. In the southern hemisphere
one has likewise ¥ < 0.

e Likewise one derives from Fig.9.18 that in the tropopshere

Fig.9.21 Qualitative impact of
the heat fluxes on the Hadley
circulation. They cause relative
heating in the tropics and
cooling in the subtropics, so
that air masses rise in the
tropics and sink in the
extratropics

J>0 w>0 J<0

equator 30°N
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Fig.9.22 Impact of the momentum fluxes on the Hadley circulation. As the heat fluxes they enhance
the direct Hadley circulation

oM
— <0 (9.183)
0z
because the divergence of the momentum flux (3 (u'v’)/dy > 0) increases with altitude.
This also leads to ¥ > 0, as summarized in Fig. 9.22. Again one obtains for the southern
hemisphere ¢ < 0.
e One also sees that a reduction of the static stability N2 leads to an enhancement of the
meridional circulation as well.

9.2.7 Summary

To leading order the Hadley circulation in the tropics can already be understood without
the impact of eddies. Those, however, represent an important correction.

e Adiscussion of the dynamics without waves can be done using the stationary zonally sym-
metric primitive equations in Boussinesq approximation. Essential are radiative heating,
with a potential temperature characterizing radiative equilibrium that decreases in spring
and fall from the equator to the poles, and momentum exchange with the solid earth via fur-
bulent surface friction. In the inviscid case the equations admit a geostrophic-hydrostatic
equilibrium solution without meridional circulation. Even the weakest friction, however,
makes this solution impossible, and a solution is to be found where a maximum of angular
momentum at the ground is accompanied by easterlies in its vicinity.
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e Inthe case of weak turbulent viscosity an analytical solution is possible with a subtropical
Jjet stream resulting from angular-momentum conservation in a merdidional circulation
directed polewards in the upper troposphere. The latitude dependence of the correspon-
ding potential temperature follows from the thermal wind and a continuous transition to
radiative equilibrium outside of the Hadley cell. One finds that the horizontal extent of
the Hadley circulation increases with the equator-pole contrast in radiative-equilibrium
potential temperature, while it decreases with radius and rotation of the planet. The stron-
ger the equator-pole contrast the stronger the circulation, and the stronger as well the
reduction of potential temperature in the tropics. The corresponding heat flux is every-
where directed from the tropics to the middle latitudes. An equilibrium between angular-
momentum flux and the viscous-turbulent angular-momentum sink by surface friction
leads in the vertically integrated angular-momentum equation to surface easterlies near
the equator.

e A modification of the zonally symmetric model for summer and winter conditions leads
to easterlies everywhere above the equator. The Hadley cell on the winter side is consi-
derably stronger than the summer cell.

e Eddies turn out to have a considerable influence. With the latitude dependence of their
momentum fluxes in the upper troposphere they represent an angular-momentum sink so
that the subtropical jet stream with eddies is weaker than without eddies. In addition, the
latitude dependence of the eddy heat fluxes enhances the equator-pole contrast between
heating and cooling so that the Hadley circulation is forced additionally. These impacts
can be captured quite conveniently in an elliptic equation for the mass streamfunction.
They are the stronger the weaker the stratification is.

9.3 The Circulation in the Midlatitudes

While the circulation in the tropics can be described to some extent without waves, the
midlatitudes are not to be understood without the effect of waves at all. The dependency
of the heating rates on longitude, for example because of the land—sea contrast, orographic
wave generation and particularly baroclinic instability continuously excite waves in the
extra tropics. Hence the dynamics of this latitude region is intrinsically turbulent. Important
characteristics of the resulting circulation are the Ferrel cells and the barotropic jet stream
in the midlatitudes. In the following section we want to discuss the dynamics of these
phenomena.

9.3.1 The Phenomenology of the Ferrel Cell

For a phenomenological description of the Ferrel cells we can go back to the considerations
of the last section. In the context of Boussinesq theory it is possible here as well to introduce
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a meridional streamfunction i defining the zonal-mean meridional and vertical winds via
(9.177) and (9.178). Using the effective heating rate

0 0) —0
J=— Ly 886 20 (9.184)
ay 6o T
and the effective acceleration
a  ,, | o{u)
M=——®wvY+— K (9.185)
dy 0z 0z

supplemented here by the effect of turbulent friction in the boundary layer, this streamfunc-
tion can be determined from the elliptical Eq. (9.180). The corresponding derivation has not
made use of any specific aspects of tropical dynamics, so that all can be used in midlatitudes
right away. In fact the application of quasigeostrophic theory is much better justified in the
present context. Different here is that we can neglect the direct heating, as we did in the
tropics with regard to turbulent friction outside of the boundary layer, and the sign of the
wave forcing changes as well.
Thus, according to Fig.9.18 one finds that the momentum-flux convergence in midlati-
tudes
i(u/v/) <0 (9.186)
dy

increases with altitude up to the tropopause so that
oM ?
M T vy 0 (9.187)
0z dzdy

As a consequence of the baroclinic instability active there the heat flux has its maximum in
midlatitudes so that

82
Fe) 5 (') <0 (9.188)
y
whence
oJ
>y >0 (9.189)
y

All of this taken together shows that the streamfunction
v <0 (9.190)

must be negative, so that the corresponding circulation is opposite to the one of the Hadley
cell. In the southern hemisphere the signs reverse correspondingly.

Alternatively the circulation outside of the boundary layer can also be derived directly
from the momentum Eq. (9.166) and the buoyancy Eq. (9.173). In the climatological mean
all time derivatives vanish in winter and summer, and one obtains with (9.184) and (9.185),
neglecting temperature relaxation and turbulent viscosity,
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= oyl (9.191)
__ 13 ‘b (9.192)
(w) = N28y<v ) .

where the zonal means also indicate time means. Following Fig.9.18 one has in midlatitudes
d{u'v’')/dy < 0. This explains the sign of (v) in the upper part of the Ferrel cells. One sees
from this figure as well that the sign of (w) at the meridional boundaries of the Ferrel cell
can be explained directly by the sign of 3(v'd’)/dy.

The surface winds in midlatitudes can be understood by two lines of argmentation that do
not differ in essence, however. Consider the climatological mean of the zonal-mean zonal-
momentum equation (9.166). The acceleration according to (9.185) includes the effect of
the turbulent friction in the boundary layer, and one obtains

— Dy 2 (g2 9.193
—fo(v)——@wv)-l—a—z( 8z> (9.193)

e On the one hand, one can integrate this equation vertically over the boundary layer with
the thickness Az. Because the horizontal momentum fluxes are negligible there, one finds

],
— fiV~=|K (9.194)
82 0
with
Az
V= /dz(v) >0 (9.195)
0

the vertical integral of the meridional wind. Here, the boundary conditions are such that
the turbulent momentum flux vanishes at the top of the boundary layer. At the lower
boundary the turbulent momentum flux can be approximated by a drag coefficient,

ad 0 tz=A
w) _ ar=aL (9.196)
0z Clu) atz=0
Hence one obtains
z:O:(u):%V>0 (9.197)

i.e., westerlies prevail so that friction is balanced by the Coriolis effect.
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Fig.9.23 Wave forcing of the Ferrel cell and the surface westerlies in midlatitudes

e On the other hand, one can integrate over the whole troposphere, yielding

H H 5
—f()/dz(v) = —/dza(u/v/) — C (u)],— (9.198)
0 0

But according to (9.106) the total meridional mass flux vanishes, simplifying the equation
to

H
1 a .,
z=0: () =——= | dz—uv’) >0 (9.199)
C ay
0
because the mid latitude momentum flux is convergent, as can also be read from Fig. 9.18.

Following Vallis (2006), the whole is summarized in Fig.9.23.

9.3.2 Eddy Fluxes and Barotropic Jet Stream

A distinguished characteristic of the midlatitudes is their barotropic jet stream, most evident
in local cuts without zonal average. In Fig.9.24 the baroclinic jet stream in the subtropics,
with surface easterlies, is clearly distinguishable from the barotropic jet stream in midlatitu-
des, where westerlies extend to the ground. This wave-driven phenomenon shall be discussed
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Fig.9.24 Latitude-altitude dependence of the zonal wind at 150°W above the Pacific in northern-
hemispheric spring. Data from ERAS (Hersbach et al., 2020)

in the following. We will also see there that the configuration of the eddy fluxes causing
this jet stream are a direct result of baroclinic instability and the conservation of vorticity as
described by the Kelvin theorem.

The Basic Mechanism

Baroclinicity is essential in the dynamics of the jet stream, this however only for the expla-
nation of the mid latitude wave source by baroclinic instability. Beyond this all can be
discussed within the framework of barotropic dynamics. Take, e.g., a barotropic incompres-
sible B-channel with periodic boundary conditions in zonal direction. Because the flow is
purely horizontal one has from incompressibility

u dv
4+ 20 (9.200)
dx  dy
therefrom
a{v)
21 -0 (9.201)
dy
and hence also
(v) =0 (9.202)

because the flow at the meridional boundaries of the channel must be zonal. Moreover, there

is only vertical relative vorticity

v 9
% (9.203)
dx dy
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The planetary vorticity is f = fo 4+ By, and the absolute vorticity w,; = f 4+ ¢ consists of
the latter and relative vorticity. Assume moreover that the atmosphere is initially at rest so
that its absolute vorticity is identical with the planetary vorticity, increasing from south to
north. Now the atmosphere is put in midlatitudes into irregular motion, e.g., by a baroclinic
wave source. Following the Kelvin theorem (4.33), outside of the region of the wave source
all material surface elements conserve their absolute vorticity flux

Iy = we;dS (9.204)

The velocity field, however, is non-divergent, and hence due to the two-dimensional variant
of (1.12) the material surface d S is conserved as well, so that the material surface elements
transport their absolute vorticity. The latter is given initially by the planetary vorticity so that
surface elements moving northwards carry low absolute vorticity and southwards moving
surface elements transport high vorticity. Hence, in the zonal mean one obtains outside of
the baroclinic source region a negative vorticity flux

(vwgz) = (Vw),,) <0 (9.205)

From the definition of the absolute vorticity it is obvious that the zonal-mean flux of absolute
vorticity agrees with that of relative vorticity, i.e.,

(W)= ¢ (9.206)

This relative-vorticity flux is, due to (9.200),

'  ou v 9 vt D ou’
A et I S A SO A S el
vg“—v( > wv)+u (u'v") uax

ax ay ax 2 ay ady ax 2 ay
8 v/2 u/2 8
=—|———)—-—@) (9.207)
ax \ 2 2 ay

so that its zonal mean agrees with the zonal-mean momentum-flux convergence

/ot 8 ’.7
(W) =——uv)=———(uv) (9.208)
dy dy
Because the flow at the meridional boundaries of the channel is zonal, this implies that the
meridional average of (v'¢’) vanishes, as well as that of (v'w],.). Therefore one has in the
baroclinic source region

ad

E(M’v’) =—0')=-(w,,) <0 (9.209)
so that positive zonal-momentum is transported from the subtropics and polar regions into
middle latitudes. Hence a jet stream with (4) > 0 is caused in midlatitudes, flanked by
easterlies. This is sketched in Fig.9.25.
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Fig.9.25 Westerly jet stream with its easterly flanks, as it originates in midlatitudes from momentum-
flux convergence, that is again due to a baroclinic source there and vorticity conservation according
to the Kelvin theorem

A further angle to this result is offered by the properties of Rossby waves, now without
the assumption of barotropicity and incompressibility, however within the framework of
linear quaisgeostrophic theory. Consider the baroclinic instability as a mid latitude source
of Rossby waves. Following (8.146) these propagate with a meridional group velocity

9 2k
Cpy = ) . 9.210)
' 8y (2 2 f02 2 1 >
K17+ —Sm® 4+ —5-
N2 412,

where k and [ are the zonal and meridional wavenumber, respectively, and () the zonal mean
of potential vorticity. Although the latter also contains contributions from the atmospheric
flow field, its meridional derivative is dominated by that of the planetary vorticity, i.e.

a(m
dim) ~pB>0 (9.211)
dy
Because the waves originate from the mid latitude source region one finds that

to the north of the source region:  ¢gy > 0=kl >0 9.212)
to the south of the source region: ¢y < 0=kl <0 (9.213)

This has consequences for the meridional momentum flux. The contribution of each Rossby

wave is, due to (8.144),
)y Al?
(uv'y = ——kl (9.214)
0
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Fig.9.26 Characteristic
boomerang shape of the
streamlines of midlatitudes u'v'<0
Rossby waves with a

convergent momentum flux

(U max
y
u'v'>0
Hence
to the north of the source region:  (1'v') < 0 (9.215)
to the south of the source region:  (u'v') > 0 (9.216)

whence follows (9.209). The Rossby-wave streamlines have a characteristic boomerang
shape as sketched in Fig.9.26.

A Closed Description with Wave Source and Dissipative Sink

For the development of simple closed equations for the jet stream we return to barotropic
dynamics. Consider a 8-channel with constant density pg and purely horizontal flow. The
equation of continuity then leads to (9.200). The horizontal-momentum equations are in this
framework

ou P
—+4+u-Vu— fv=——+4+F, — D, (9.217)
ot 0x
ov P
—+4+v-Vv+ fu=——+F,— D, (9.218)
at ay

where P = p/po is the density-normalized pressure, F the baroclinic source, and D the
viscous-turbulent term. As usual 3(9.218)/9x — 9(9.217)/9y with (9.200) leads to the pro-
gnostic equation

3
a—i+u~V§+,3v=F;—D; (9.219)
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for relative vorticity (9.203), where

Fr = of _ 9 (9.220)
ox ay

is the baroclinic vorticity source, and

oD, 0D,

Dy =
¢ ax ay

(9.221)

the viscous-turbulent sink. Due to the non-divergence (9.200) the zonal-momentum equation
(9.217) can also be written

ou P
— 4+ V.-(uu)— fv=——+4+F, — D, (9.222)
at 0x

whence in the zonal mean
o{u) 0

5 T oy — S = (F) = (D) (9.223)

Now, however, due to the non-divergence (9.200) and the impermeability of the meridional
boundaries of the §-channel, the zonal-mean meridional velocity vanishes as in (9.202) so
that

(uv) = W) () + W'y = W) (9.224)

Beyond this it is reasonable to assume

(Fu) =0 (9.225)

because F represents the effect of baroclinic instability, generating essentially waves without
zonal mean. Finally, we choose as most simple ansatz for the description of turbulent friction

(Dy) = r(u) (9.226)

All of this taken together we obtain from (9.223)

a a
) =—— W'V —ru) (9.227)
ot ay
But due to (9.208) the vorticity flux is identical with the momentum-flux convergence so

that these equations can also be written, again using (9.202),

0
3u) = (') —ru) (9.228)
ot
The mean-flow acceleration can be related to wave transience. The zonal mean of the
vorticity equation (9.219) is

o), 0

S+ 3y = () = (Do) 9.229)
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Subtracting this from (9.219) results, under neglect of all terms nonlinear in the wave con-
tributions, in a prognostic equation for the eddy vorticity,
ac’ ar’

o Tl v = F - D (9.230)

where

d
= p 4 A8 (9.231)
dy
is the meridional derivative of absolute vorticity. Similar to Sect. 8.3.2 we now assume that
the latter varies only very slowly in time. Then, multiplication of the eddy-vorticity equation

by ¢’/y, and zonal averaging of the result, yields the equation

aA /ot 1 I nld / /
< T = ” ((¢'Fly = (¢'Dy}) (9.232)
for the wave-action density
12
A= <§—> (9.233)
2y
The sum of (9.228) and (9.232) is
du)y aA 1 - ;o
W—FE:;((C F;>_<§ D;))_r@‘) (9.234)

This yields a barotropic variant of the non-accelaration theorem. In the time mean, here of
interest, we find

1
ru) = ((¢'F)) = (&'Dy) (9.235)

Hence the mean zonal wind results from a balance between the baroclinic source (¢’'F {’)
of wave action, largest in midlatitudes, and the viscous-turbulent sink (¢’ Dé ). This balance
integrates to zero: The meridional integral of (9.232) is in the time mean

1
0=— f dy ((&'F{) = (¢'D})) (9.236)
14
because, due to the meridional boundary conditions of the 8-channel
!/ a ’.!
fdy(v;):—fdya—(uv)zo (9.237)
y
It is obvious that in the middle latitudes, close to the baroclinic source,
(¢'F{) > (¢'Dy) (9.238)

whence
(u) >0 (9.239)
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while at the flanks of the jet stream
(¢'F}) < (¢'D}) (9.240)

and hence
(u) <0 (9.241)

The decisive balances are sketched in Figs.9.27 and 9.28.

Fig.9.27 Latitude distribution 90 : :
of the zonal-mean wind and the
eddy velocity corresponding to i
the wave-action density, |
resulting from a barotropic
model with mid latitude wave 60
source and viscous-turbulent °
sink. Redrawn from Vallis B
(2006) with permission from E L
Cambridge University Press
30 +
i — mean zonal wind |
— eddy velocity
0 1 1 1 1 1
-10 0 10 20
ms™
Fig.9.28 Asin Fig.9.27, but 90
now showing the wave source
({’Fé), the wave sink (;’Dg), ]
and their net effect, agreeing |
with 7 (u). Redrawn from Vallis
(2006) with permission from 60 b
Cambridge University Press 9 |
3
B ]
30 B
— Wave source
— wavessink
—sum
0 1 1 1

4 8




388 9 The Meridional Circulation

9.3.3 ATwo-Layer Model

The discussion above of purely barotropic dynamics does not admit the explicit treatment
of a baroclinic wave source. Moreover, it also does not allow a description of an altitude-
dependent mean circulation. The most simple framework to make this possible is a two-layer
model.

The Model Equations

In the baroclinic perspective as well the mechanism of vorticity conservation pertains as it
is described by the Kelvin theorem. Now however, as in Chap.4.5.2, it is to be applied to
isentropic material surface elements, and vorticity is to be replaced by potential vorticity.
Therefore the most direct route from the barotropic to the baroclinic perspective is a model
with two isentropic layers (Held, 2000). A bit easier, however, is the approach of Vallis
(2006), where a model with two layers is considered that each have constant density. The
resulting equations are the same as in the isentropic two-layer model. The conditions are
sketched in Fig.9.29: One has two layers with constant densities

pr=po—P1 P < po (9.242)
p=po+0 P2 p0 (9.243)

that do not differ much. The upper lid is rigid, which is only possible if a temporally and spa-
tially dependent pressure pr(x, y, t) is applied there. The interface between the two layers is
variable so that its vertical displacement relative to the equilibrium positionis n(x, y, t). The
respective layer thicknesses are k1 (x, y, t) and hy(x, y, t), with corresponding equilibrium
values Hy and H>. As we are interested in synoptic-scale eddies, these are in geostrophic
and hydrostatic equilibrium so that n is small in comparison with H; and H,. The total
thickness of the model atmosphere is

p, = const.

v

Fig.9.29 Geometry of a two-layer model for the discussion of the mean circulation in midlatitudes
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H =h; + hy = H + H> = const. (9.244)

As in the derivation of the shallow-water equations one assumes that the horizontal winds
u; and u; in the layers do not depend on altitude.
The corresponding pressure results from hydrostatic equilibrium

8 .
b = —8pi (9.245)
0z
ie.,
p1=pr+pmg(H —2) (9.246)
p2=pr+p1g(Hy —n) + p2g(Hy +n —2) (9.247)

Hence the pressure-gradient accelerations acting in the two horizontal-momentum equations
are

1 1 1

—Vpp1r = —Vpr = —Vpr (9.248)
P1 P1 £0

1 1 P2 — P1 1

—Vipr = —Vpr +g———Vn~ —Vpr+¢'Vy (9.249)
02 P2 2 £0

Here we have assumed p; & pg in the denominator. Moreover,

g =g 2 (9.250)

£0

is the so-called reduced gravity. Including simple turbulent friction in the lower layer, the
horizontal-momentum equations becomes

Du; pr

—_— e, xu=—V— 9.251
Dt +f z 1 20 ( )
Du

B e xw=—VEL gy —rw (9.252)
Dt £0

Here r is the turbulent drag coefficient.
The continuity equation in each layer is

8 .
Vo + 22— (9.253)
0z

Elimination of the vertical wind is achieved as in shallow-water theory: Vertical integration,
e.g., of the upper layer, first yields

hiVup + [wilf,_, =0 (9.254)
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However
Dz " Dh
[wilff,_, = [—} = (9.255)
Dt |y Dt
so that one obtains
P 0 (9.256)
B | R — .
Di 1 1
or correspondingly
oh
a—tl+V-(h1u1) =0 (9.257)
The treatment of the lower layer is completely analogous, so that generally
oh; .
W+V-(h,~ui):0 i=12 (9.258)

For reasons that will become clearer farther below these equations shall also be extended
by sources and sinks S; describing a mass exchange between the two layers that is due to
sinking and rising air masses. Hence

oh;
8—; +V-(hw) =S; (9.259)

are used.

Geostrophic and Thermal Wind
The geostrophic equilibria between Coriolis force and pressure-gradient force are respec-
tively

foe; xup = —viL (9.260)
£0
fol. Xy = —V (% + g’n) (9.261)

where fj is the value of the Coriolis parameter at a mean reference latitude, so that the
geostrophic winds are

1

u, =e; x %V’;—Z (9.262)
1

Uy, =€; X %V (Z—Z + g/n) (9.263)

The difference between these yields the thermal-wind relation

fo(uig —uzg) = —g'e; x Vn (9.264)
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which is component-wise

d
fo g — uzg) = g/ — (9.265)
dy
d
fo (vig = v2g) = —¢'57 (9.266)

Hence, —n takes the role of potential temperature. An interface slope as in Fig.9.30, i.e.,
with increasing altitude from the equator to the pole, corresponds to a vertically increasing
zonal wind. In order to be close to real atmospheric conditions one therefore needs source
terms S; transferring at the equator mass from the lower layer to the upper layer, as would
result from direct heating, and transferring at the pole mass from the upper layer to the lower
layer, corresponding to cooling there.

The Zonal-Mean Equations in Quasigeostrophic Scaling
In midlatitudes we can assume geostrophic winds

u; XU, (9.267)
Since the latter are non-divergent
V.ou=0 (9.268)
Ui _--" - u; > u,
o= 2
- - _’7 > 0
.- oy
-7 U,
equator pole
$,>0 5,<0
5,<0 5,>0

o eton T

Fig.9.30 The interface of the two-layer model is tilted upwards from the tropics to the pole, corre-
sponding to a decrease of potential temperature and a positive zonal thermal wind. This tilt is due to
source terms in the continuity equations that describe the effect of solar heating. The latter leads to
rising air masses in the tropics and sinking air masses in the polar regions

radiation
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the zonal-momentum equations can be written at good accuracy

ou ad

LV @) - fu =2 (9.269)
at ax po

au d

T2 4V ) — for = —— (ZE 4 ¢'n) = rus (9.270)
at ax \ po

The zonal mean of these is

9 9,
<8“t1> + 5<u]u1) — fl) =0 9.271)
9 9.,
(zauz2> 5(u2u2) ~ Flv) = —r(ua) 9.272)

As in barotropic theory one has also, however,

3 /.7 a / !/ / / .7
5 <Uiui> ~ 5 <vgiugi) == <§gi vgi) ~ = (é‘l vi) (9273)
Moreover
flvi) = folvi) + O(RofpU) (9.274)

because the B-term is only O(Ro) in comparison with the leading term. Hence the zonal-
mean of the zonal-momentum equation becomes approximately

d(u1)

5~ fotv) = (vig)) (9.275)
0
(a”f) — folva) = (v3¢3) — r{uz) (9.276)

Averaging the continuity equations likewise results in

d(hi)

3 0 _ -
Py + 5 ((hi){v;) = _50’1’”") +(Si), i=12 (9.277)

so that the Eulerian mean of the two-layer model is

d(u1)

ar — Jolvn) =(vig() (9.278)
0]
<aut2> = folv2) =(v3¢3) — r(u2) 6-279)
hi) 8 oD, . —
T+5((hz>(v1))— ay<hivi)+(51)v i=12 (9.280)

Herein (h;) ~ H; because 1 is small, an approximation not applicable in meridional deri-
vatives of the zonal-mean thicknesses.
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Now for the transformed Eulerian mean. First, as in shallow-water theory one can easily
show that in the absence of friction (» = 0) and sinks and sources (§; = S, = 0)

d
(5 T v) M =0 (9.281)
where .
m, = Clh— (9.282)
i

is the ith-layer potential vorticity of the two-layer model. In synoptic scaling one has

Inl < hi (9.283)
il < fo (9.284)
so that I1; =~ m; /H;, where
h; — H;
Tmi=¢+f—fo 7 (9.285)
1

is the corresponding quasigeostrophic potential vorticity. Hence

o) = i) — 7000

9.286
H; ( )

However, the mass of a fluid column is proportional to its thickness so that a mass-weighted
(transformed Eulerian) mean of the meridional velocity in each layer is

vihi) (o)
(vids = = (v;) + (9.287)
S B )
because
(hivi) = (hi)(vi) + (o)) (9.288)
Hence, and because (h;) &~ H;, the zonal-mean momentum equations become in good
approximation
a(u1)
S~ fov). = (i) (9.289)
o{u
<af> ~ fovahe = (Wh73) — rua) (9.290)

Likewise the zonal-mean continuity equations can be re written

i)\ 0 hyios) = (S; i =1,2 9.291
T+5(( iNvide) =(8;), i=1, (9.291)
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so that in summary the transformed Eulerian mean (TEM) of the two-layer model is

o(ur)

o~ Jotvis =(v|my) 9.292)
3
S o) =(uprh) — rtua) (9.293)
i) 9 e o
-, T 7y ((hi)(i)s) =(Si), i=1,2 (9.294)

Integral Properties

From the equations follow two important properties of vertical integrals of the model. First,
due to the non-divergence of the approximately geostrophic wind, the continuity equations
can also be written

oh; .
W+u,~~Vhi:S,', i=1,2 (9.295)
Inserting
hy=H; —n (9.296)
hy = Hy+ 1 (9.297)
yields
d
_ v =5, (9.298)
at
an
The sum of these two equations is
—(u—w)-Vp=81+5 (9.300)

Due to the thermal-wind relationship (9.264), however, the left-hand side of this equation
vanishes so that

and there is a mass-exchange term S from which S1 and $; can be determined via

S =S (9.302)
S =-8 (9.303)

where s
Sy=0<0 Sy=Ly) >0 d—zO (9.304)

y
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Inserting this into the transformed Eulerian mean of the continuity equations yields

) | 0 ~
o + 7y () {vr)s) = —(S) (9.305)
0 0
% + — ((h2){v2)x) = () (9.306)
t ay
so that in sum 5
3y ({(h1){v1)s + (h2)(v2)) =0 (9.307)

Once more we apply the meridional boundary conditions

y=0,Ly: v,=0 (9.308)
so that
(h1)(v1)x + (h2)(v2)x =0 (9.309)
or, due to h; ~ H;,
Hi{vi)x + H2(v2)« =0 (9.310)

Hence the vertical integral of the mass flux vanishes.
Moreover, from the relationship (9.266) for the meridional component of the thermal
wind follows at good accuracy

== 9.311
n (Ul ) fodx 2 ( )
so that in the zonal mean
(' (vi — vé)) =0 9.312)
Because due to (9.296) and (9.297)
n = —h’1 = h’z (9.313)
one obtains from this
(vih/l) + (véhé) =0 (9.314)

i.e., in the vertical mean the eddies do not transport any mass. Hence the approximate vertical
integral of the potential-vorticity fluxes is

Hy )]y + Ha (o) = H) <v/1 (;{ - %hl» - Hy <v/2 (;2/ - %hz»
= Hi(v{¢]) + Ha(v325)

a / !
=3 (Hi(uv)) + Ha(uhvh)) (9.315)
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where we have used (9.273) in the last step. Because, due to the meridional boundary
conditions of the B-channel, there are no momentum fluxes, one finally obtains

L)’
/dy Hi(vim}) + Ha(v3m3)) =0 (9.316)
0

Hence the vertical and meridional mean of the potential-vorticity flux vanishes.

The Dynamics of the Climatological Mean

Based on the relationships derived above, we now discuss the dynamics of a climatological
mean, where all time derivatives disappear by time averaging and where all zonal means
are replaced by zonal and temporal means. First, integration of the climatological means of
(9.305) and (9.306) yield, again using the meridional boundary conditions for v;,

1 y
(v1)s ~ _71/ (S) (9.317)

1 1y
(V2)s ~ Fz./o (S) (9.318)

Due to (9.304), however, this means that

(v1)x >0 (9.319)
(v2)% <0 (9.320)

i.e., the residual circulation in the upper layer is directed to the pole and the one in the lower
layer to the equator. Effectively this is a consequence of mass conservation together with
heating (cooling) in the tropics (polar regions).

Next, the approximate vertical integral of the zonal-momentum equations in the TEM
yields

— fo (Hi{v1)« + Ha(v2)x) = Hi{vim|) + Ha(vymy) — r Ha(uz) (9.321)
or with (9.310)

rHa(uz) = Hy (v|7]) + Ha(v)}) (9.322)

i.e., the mean zonal wind in the lower layer (the surface wind of this model) agrees with
the vertical integral of the potential-vorticity flux. The resulting wind distribution hence
only depends on the corresponding balance. Now consider the climatological mean of the
upper-layer zonal-momentum equation in the TEM. One obtains

— folvi)s = (V7)) (9.323)
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Hence
(vgnl’) <0 (9.324)

and therefore, due to (9.316), the potential-vorticity flux in the lower layer tends to be
positive. For a clearer picture of the balance between the two fluxes recall that the meridional
group velocity of the potential-vorticity-transporting waves is

d(m; 3% (u; 3(hi
Cor (i) _ (;)+ﬂ_ﬁ (hi) (9.325)
ay ay H; dy
Typically, however, the relative-vorticity gradient is smaller than the planetary-vorticity
gradient,

3% (u;)
| < B (9.326)
so that roughly
0 a(h
(1) ~p— Jo 9(h1) 9.327)
ay H, 0dy
0 a(h
(m) . Jo 9(h2) (9.328)
dy Hy 9y
However, due to solar heating
da{h
) o (9.329)
dy
da(h
) (9.330)
dy
so that
0
) pso (9.331)
dy
d
r2) < (9.332)
dy

Here the result for the lower layer cannot be understood without the comment that, from a
calculation as in the derivation of the Rayleigh theorem in Sect. 6.4.2, left to the interested
reader as an exercise, baroclinic instability is only possible if

2 Ly 2

y . 9 (7

3 H / dy—Yi! . i _ (9.333)
= lw — k(ui)|= dy

Here w is the complex eigenfrequency of the baroclinic instability, Vi the corresponding

streamfunction amplitude in the ith layer, where the quasigeostrophic streamfunctions are

approximately
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1 pr
o Ler 9.334
v. Jfo po ( )
1
Yy = — (p—T + g’n) (9.335)
fo \ po
so that 7
n= —g—? W1 —¥2) (9.336)

For the two-layer model to generate waves at all, (9.333) must be fulfilled, and hence the
lower-layer potential-vorticity gradient must be negative at some locations. In this aspect the
model differs perhaps from reality. The climatological gradient of potential vorticity from
observation is shown in Fig. 9.31, and one sees that the gradient is predominantly positive at
all altitudes. The essential result remains, however, so that the upper-layer Rossby waves are
faster and hence are better able to spread potential-vorticity fluctuations. Therefore it is to
be expected that the distribution of (vj7{) < 0 is broader than that of (vj7}) > 0. Because
of (9.316), however, the areas under the two distributions agree with each other, so that

(up) > 0in middle latitudes

337
(uz) < 0 at the flanks of the jet stream (0-337)

This is sketched in Fig.9.32 and agrees with the empirical findings. The upper-layer winds
result therefrom and the baroclinic shear of the zonal-mean atmosphere according to the
thermal-wind equation (9.264). It is important to realize that it is the surface winds that
are controlled by the eddies together with surface friction, and that the upper-tropopsheric
winds simply result from those!

Finally, the upper branch of the Ferrel circulation is obtained by considering the clima-
tological and Eulerian-mean zonal-momentum equation

— folv) = (v1¢)) (9.338)

As in barotropic dynamics, e.g., via the relationship between Rossby-wave group velocity
and momentum flux, we have here as well

(1)) >0 (9.339)

Hence
(v1) <0 (9.340)

In the lower layer, however, the eddy fluctuations are weak so that (v)¢;) can be neglected
in the corresponding Eulerian-mean zonal-momentum equation, whence the climatological
mean of the latter is

— fo(v2) = —r{uaz) (9.341)
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Fig.9.31 Zonal-mean potential vorticity (blue contour lines) and zonal-mean potential temperature
(red) in the annual mean (top panel) and in northern-hemispheric winter (bottom) from ERAS analysis
data (Hersbach et al., 2020)

requiring that in middle latitudes (v2) > 0. In summary, one obtains the Ferrel cell

in middle latitudes: 2”1 i 8 (9.342)

~ —
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Fig.9.32 Mid latitude surface winds are due to the balance between potential-vorticity fluxes in both
layers, resulting in westerlies in middle latitudes, and easterlies at the corresponding flanks

9.3.4 The Continuously Stratified Atmosphere

Based on the discussions above, the representation of the mid latitude circulation in the
continuously stratified atmosphere shall be done relatively quickly. A few parallels, but also
differences, shall be described here in addition.

The Surface Winds

The connection between the surface winds and the potential-vorticity fluxes is similar to the
one in the two-layer model. We recall that the TEM zonal-momentum equation is within the
quasigeostrophic approximation

au)

= o) =) +(F) (9.343)
where L s
ES p 11,/
= — = |z ?b 9.344
(V)" = (v) 92 (N2<U )) ( )
is the residual meridional wind, and where turbulent friction is approximated via
10 0
(F) = =— <5Kﬂ> (9.345)
0 0z 0z

— Pl =o'’y + p(F) (9.346)
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or, after inserting (9.344)
_ 0 0 — 0 (__ 0(u)
- — | = @b) ) = — | pPK—— 9.347
f0p<v>+f08z <N2<U >) plom) + -\ PK—- (9.347)
The vertical integral of this equation, defined for an arbitrary field X by
o
(X} = /de (9.348)
0
yields
—_ ﬁ 1./ *© —_ /7 —_ a(u) *
— folo) + fo| 5 ') | ={p0'n"}+|pK (9.349)
N 0 0z 0
In quasigeostrophic scaling the continuity equation is
_ J _
V. (pu) + E(pw) =0 (9.350)
leading in the zonal mean to
0 _ a _
— W) + —(Pw) =0 (9.351)
ay 9z
Vertical integration gives
0
3 {p(v)} =0 (9.352)
y
due to the boundary conditions
0o ——0 (9.353)
7—> 00
(wl,—¢ = 0 (9.354)
Since (v) = 0 holds approximately at the poles ones has in general
{p(v)} =0 (9.355)
Moreover, likewise,
p— o0 p—
p I/ IO 1./
—(v'b )] =— |:—(v b ):| (9.356)
[N2 0 N2 z=0
For the negative turbulent momentum flux we assume
d 0
sk ) _ { Lo (9.357)

ol 2=0
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so that one obtains in total

f 0/ 777 1 ’_!
=0: == (b —1p(v'm 9.358
z rlu) = ) + = {p0) (9.358)
In the continuously stratified atmosphere as well, the surface winds result from the vertical
integral of the potential-vorticity fluxes, however substituted by a contribution from the

surface buoyancy fluxes.

The Potential-Vorticity Flux
Because the zonal-mean meridional potential-vorticity flux agrees with the divergence of
the Eliassen—Palm flux,

(Wn'y = éV -F (9.359)

D
=yl _Jo,
F =—-puv)e, + pmﬁ) b')e, (9.360)

consider the latter in Fig.9.33. One sees a dominance of the vertical component in the mid
latitude lower troposphere. This is the meridional heat flux resulting there from baroclinic
instability. Because the Eliassen—Palm flux is also the flux of wave-action density, one
sees that the latter is transported upwards and then equatorwards. The upwards increasing
horizontal component is explained by the upwards increase of the meridional gradient in the
zonal-mean potential vorticity (see Fig.9.31) and hence also the meridional Rossby-wave
group velocity. The signs of the Eliassen—Palm-flux divergence are such that it is negative
in the upper troposphere and positive in the lower troposphere. This agrees well with the
findings from the two-layer model, and it can also be identified in Fig.9.34. One can see
there as well, with an additional glance at Fig. 8.9, that the upper-troposphere wave fluxes
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Fig.9.33 From ERAS5 analysis data (Hersbach et al., 2020), the Eliassen—Palm flux and its divergence
(left panel, negative values indicated by dashed contours) together with the zonal-mean wind (right),
both for the northern hemisphere in northern-hemispheric winter
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Fig.9.34 From ERAS5 analysis data (Hersbach et al., 2020), the Eliassen—Palm-flux divergence (thin
contours, negative values indicated by shading) and the zonal-mean zonal wind (fat contours) in the
yearly mean (left panel) and in northern-hemispheric winter (right)
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Fig. 9.35 From ERAS5 analysis data (Hersbach et al., 2020) for northern-hemispheric winter: The
decomposition of the Eliassen—Palm-flux divergence into its horizontal part (momentum-flux con-
vergence, left panel) and its vertical part (heat flux, right), each together with the zonal-mean zonal
wind as in Fig.9.34

balance the effect of a poleward residual circulation, and that the lower-troposphere fluxes do
so as well (in parts) for the equatorward residual circulation there. The decomposition of the
Eliassen—Palm flux divergence into the respective contributions from the momentum and heat
fluxes, shown in Fig.9.35, exhibits quite clearly the pattern of momentum-flux convergence
in midlatitudes and divergence at the flanks of the jet stream, as could already be predicted
from barotropic theory. Note again that it is not the case at all that positive Eliassen—Palm-
flux divergence leads to westerlies and negative Eliassen—Palm flux divergence to easterlies!
This is because we are considering climatological means where all time derivatives are
averaged out. A more intricate situation arises where the surface winds are controlled by
a boundary-layer balance between turbulent friction and the vertical-mean Eliassen—Palm
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flux convergence, supplemented by surface buoyancy fluxes. The upper-tropospheric winds
follow from the surface winds and thermal-wind balance.

9.3.5 Summary

Different to the tropics planetary-and synoptic-scale waves in middle latitudes, generated by
the land—sea contrast of atmospheric heating, by orography, and by the process of baroclinic
instability, are not just one additional factor in the explanation of the mean flow. Here they
are essential from the beginning.

e Phenomenologically the meridional circulation in the Eulerian mean can be determined
by the solution of the elliptic equation for the mass streamfunction. The vertical derivative
of the momentum-flux convergence and the latitudinal derivative of the buoyancy-flux
convergence are structured such that they force in midlatitudes indirect Ferrel cells. At
the surface one obtains westerlies, needed for balancing in the Eulerian-mean meridional
momentum equation, via friction, the poleward circulation at the ground. Understanding
the wave-flux signs is, however, not possible without the following arguments.

e A conspicuous mid latitude phenomenon is a jet stream with a considerably more baro-
tropic structure than the subtropical jet stream. This barotropic jet stream is forced by
waves. An important factor is the mixing of (potential) vorticity. First clues to this can
already be provided by a barotropic model. The conservation of absolute vorticity due
to the Kelvin theorem explains that a mid latitude wave source unavoidably leads to
momentum-flux convergence there, and hence a westerly jet stream flanked by easterlies.
Alternatively this can be explained by the connection between of the meridional group
velocity and the momentum flux of Rossby waves radiated by the wave source.

e The most simple framework for the study of non-barotropic aspects, i.e., the wave source,
latitude-dependent temperature, baroclinicity of the winds, and the altitude-dependent
meridional circulation is a two-layer model, where the role of vorticity is taken by potential
vorticity. Essential are sinks and sources in the two continuity equations in this model
capturing the rising (sinking) of air masses due to heating in the tropics (cooling at the
poles). The residual circulation in the TEM of this model is the mass-weighted meridional
flow. Due to mass conservation there is no vertical-mean flow. In the upper troposphere
air masses move polewards while they move equatorwards in the lower troposphere. Due
to the thermal wind potential-vorticity fluxes are balanced in the vertical and meridional
mean. The upper-layer potential-vorticity flux must be directed polewards in order to
balance in the climatological-mean zonal-momentum equation the Coriolis acceleration
due to the meridional circulation. Hence the lower-layer potential-vorticity flux must be
directed equatorwards. In the climatological mean of the zonal-momentum equation the
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vertical integral of the potential-vorticity fluxes must be balanced by surface friction.
This determines structure and sign of the surface winds. The different mean potential-
vorticity gradients lead to differences in the group velocities of the Rossby waves so
that the positive upper-layer potential-vorticity flux has a broader distribution than the
oppositely directed flux in the lower layer. Hence one obtains in midlatitudes surface
westerlies flanked by easterlies. It is the surface winds that are forced directly by the
waves, while the upper-layer jet stream follows from these by thermal-wind balance.
From the above the Ferrel circulation can be understood as well, via balancing of the
Eulerian-mean momentum equation, without needing diagnostic input from analyses.

e Simulations and analyses of the continuously stratified atmosphere essentially support
the role of the mechanisms discussed above. Again the surface winds follow from a
balance between the vertical-mean potential-vorticity fluxes and surface friction. Here,
however, surface buoyancy fluxes contribute as well.

9.4 Recommendations for Further Reading

The textbooks by Andrews et al. (1987), Holton and Hakim (2013), Lindzen (1990), and
Vallis (2006) can all be helpful in deepening the material in this chapter. The same holds for
the original publications by Schneider (1977), Held and Hou (1980) and Lindzen and Hou
(1988). Sources on the effect of Rossby waves on the Hadley circulation are Becker et al.
(1997), Vallis (2006), and Walker and Schneider (2006). The discussion of the circulation
in midlatitudes is based on Held (2000) and Vallis (2006). Useful sources on the energetics
of the general circulation are Lorenz (1967) and the textbooks of Peixoto and Oort (1992)
and Hartmann (2016).
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