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7 IMPROVING OCEAN MODELS
FOR THE COPERNICUS PROGRAMME

Design of a Runge-Kutta based time-stepping algorithm

for the NEMO ocean model
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Context

NEMO solves the non-linear, hydrostatic, primitive equations

since the 80’s :
e finite-difference approach
e (C-grid staggering on the horizontal, Lorenz-grid staggering on the vertical

e | eapfrog time stepping + Robert-Asselin time filtering -> LFRA scheme

more recently :
* non-linear free-surface, with z* (and z tilde) vertical coordinates
e fast free surface dynamics treated with a mode-splitting algorithm

e high-order (possibly non linear and adaptive implicit) advection schemes
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Objectives

revise the time-stepping algorithm to improve the model stability/accuracy/efficiency

LFRA alternatives : AB3 (Durran), LF-AM3 Pred-Cor (Shchepetkin McWilliams), one
step, forward-in-time, Runge-Kutta family (Hundsdorfer, Wicker Skamarock)...

RK3 scheme (Wicker Skamarock, 2002) has been favored in several NWP models :
* accurate,
e |ow storage,
* good stability properties for centered and upwind-biased advection,
* allow a stable time-splitting procedure.



Objectives

revise the time-stepping algorithm to improve the model stability/accuracy/efficiency

LFRA alternatives : AB3 (Durran), LF-AM3 Pred-Cor (Shchepetkin McWilliams), one
step, forward-in-time, Runge-Kutta family (Hundsdorfer, Wicker Skamarock)...

RK3 scheme (Wicker Skamarock, 2002) has been favored in several NWP models :
* accurate,
e |ow storage,
* good stability properties for centered and upwind-biased advection,
* allow a stable time-splitting procedure.

in the following, | investigate the relevancy of RK3 for use in an OGCM

* the analysis framework : normal mode decomposition
* von Neumann linear stability analysis of time-stepping schemes
* Shallow Water equations
e Hydrostatic Primitive equations with mode-splitting algorithm
* an idealized numerical experiment



1 - The analysis framework

Starting from the inviscid, adiabatic, hydrostatic primitive equations, in a 2d (x,z)

plane, linearized about a resting state, and in absence of rotation :

( 1
Ou+ —0zp = 0
PO
P d.p = —pg
A
n(x,t) < Ozu+ 0w = 0
5 dp
2 __i@ op+w— = 0
N (Z)— 00 dz >0 \ dz
z=—H' Flat bottom w(z=0) = o
p(z2=0) = pogn

w(z=—-H) = 0



1 - The analysis framework

The solution can be decomposed using the vertical normal modes

(Gill 1982, Demange et al. 2019)

u(z, z,t) = Z uq(z,t)M,(2)
< =0
p(:z:,z,t) - ngth(x’t)Mq(z)
p(z,z,t) = —pg Z hy(z,t) dg;[q (2)
{ w(z,2,t) = - Z Oruqy(z,t) /_zH M,(s)ds
n(z,t) = Z hqe(z,1)My(0)




1 - The analysis framework

The vertical modes are the eigenfunctions of the Sturm-Liouville problem :

( _ . d [ _,d
AMy(z) = c¢;?My(z) with A:-E (N 2£>
dM N2(0
Mg = MO0
dez g
q —_ - —
S (z=—H) 0

All vertical modes are depth dependent, including the barotropic/external mode :

with N? = cste,
£
= H, with =14+ - 4+ O(&?
o ao\/ g wi g + . + O(e9) NZH

Mo(z) = 1-¢ [% (%)2 == (%) + %] + 0(82) €= 9 - (9(10_2 — 10_4)




1 - The analysis framework

The vertical modes are orthonormal w.r.t. the scalar product (f,g / fgdz
ug = (u, M), h L — (p, M)
q y g/ s Thq = p0g q
Oug +9g0zhy = 0

CZ
at hq -+ 4 8:,; Ugqg
g

|
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2 - Linear stability analysis : Shallow Water Equations

3tu + C(?:,,h = () c
von Neumann analysis : il(t) ez:km , atil + c1 k’g = 0
o u(t) e ou+cikh = 0



2 - Linear stability analysis : Shallow Water Equations

3tu + C(?:,,h = () c
von Neumann analysis : il(t) ez:km , atil + c1 k’g = 0
o u(t) e ou+cikh = 0

LFRA scheme with Brown-Campana pressure averaging :

(R = Al _2Ateiku™* i i i
un-i-l,* — un—l . QAtC'ik ((1 . z,y)hn,* + ’}'(hn+1’* + hn—l))
\ . . . .
A" = (1—2e)h™* + e(hnt1* 4 pn1)
\ u = (1-2e)u™* +e(u™tH* +un 1)

3-time-level scheme, with a single rhs evaluation per time step



2 - Linear stability analysis : Shallow Water Equations

Oth+cOou = 0 P_9,

Btu + Caxh = () c
von Neumann analysis : h(t) eqfkm . Oth + ci ku = 0
o u(t) e’ ou+cikh = 0

RK3 scheme (Wicker Skamarock, 2002) with Forward-Backward feedback :

ptl3 = pn— %Atcz’ky”

Wt =y — sAtcikh™

ptl/2 — pn— %Atcz’ku"“/‘?’

urt/2 = yn — LAtcikhnt1/3
R = R Ateikurt? o
u"tt = w" — Atcik (1= 2y)h"TY/2 4 4 (AT 4+ AM))

2-time-level scheme, with 3 rhs evaluations per time step



2 - Linear stability analysis : Shallow Water Equations

with p = ck At,
LFRA+BC scheme :
Bn—}—l,* iln,*
(u"“’*\ B A B /u”’* \
h™ " |eA+(1—2€)[x eB+ely| | hn!
\ v ) \u"~1/

RK3+FB scheme:

(Z::) = [A+Bx (I + 3Cx* (I + 30))] (7‘”)

un

0 -2t
—2ip(l — 29) —4w2]
! 0]

—dyip 1
1 0
—21y 1]
i 0 —1
—ip(1 —27) —7#2]

0 —u
—tp 0



2 - Linear stability analysis : Shallow Water Equations

with p = ck At,
LFRA+BC scheme :
(Bn+1,*\ /izn,* \ ] 0 _21:#
A= .
untls | A B un* —2ip(1 —2y) —4yp
h" " |eA+(1—2€)[x eB+ely| | hn! 1 0
n .1 B = .
\ U / \u / —dyip 1
RK3+FB scheme : A — 1 0
. ,, —2vyp 1
hn+1) . . (hn) - 0 _
=[A+Bx(I+LCx(I+LC — ¥
(un+1 [ ( 2 ( 3 ))] oy B —in(1— 27) _7#2]
0 —ip
ti C=1lip o
Compute eigenvalues A* (y) and compare with e |

MWy hase _ Arg(A* (1))
amp — — pnase —
E |6ii”| |A (”‘)l) E Arg(eﬂ“)




2 - Linear stability analysis : Shallow Water Equations

LFRA(e = 0.1) amplitude error LFRA(e =0.1) phase error
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both schemes dissipates and accelerates the gravity waves,

BC and FB feedback extend the schemes stability : +53% and +22%,

BC improves Leapfrog accuracy at all scales,

FB feedback improves RK3 phase error but increases dissipation at small scales.



2 - Linear stability analysis : Shallow Water Equations

Oih + 1o Ozh + cOpu = 0

ou + ug0,u+co,h = 0
von Neumann analysis : h(t) e . Och+uoikh+cik s
ySIS - u(t)eik“’ ou+upitku+cikh

O



2 - Linear stability analysis : Shallow Water Equations

ohu+ugo,u+cod,h = 0
von Neumann analysis : h(t) e . Och+uoikh+cik ¢« =
ySIS u(t) e*? Ou+ugtku+cikh =

Apply LFRA+BC and RK3+FB schemes,
Write in matrix form, which now depends on 4., = ck At, paq, = ug k At

Compute eigenvalues /\i(ugw, Ladv)and compare with e~ HBadvFhgw)

O



2 - Linear stability analysis : Shallow Water Equations

LFRA(e =0.1, y=1/4) amplitude error

1.5 1

00 05 1.0 15 2.0

Mgw

LFRA(e =0.1, y=1/4) phase error

1.5 1

0.0 T - T
0.0 0.5 1.0 1.5 2.0

Mgw

for pure GW, we recover previous results with BC and FB feedback at play,
the pure advection has stability properties identical to pure GW without BC

and FB feedback,
in between, smooth transition



2 - Linear stability analysis : Shallow Water Equations

ati%'—% +UOA[7L]i—% +Cg[u]i—% = 0 O—0 hoi_% 0 hO_O_OH%
Oyui + uo A[U]z + Cg[h]i = 0 Uj—1 u; Uit+1
.. L pgw = S(G) tgu _ At _ At
von Neumann analysis : i oy — S(A) flade Hgw = C A Hadv = U0 A
S(G?) = 2isin(6/2)
2 . . e
S(A = 14sind 0 — kAx

i(8sin # — sin 26)/6
i(8sin § — sin 260)/6 + 8sin(0/2)* /6
i(sin 36 — 9sin 26 + 45sin ) /30 — (cos 30 — 6 cos 260 + 15cos € — 10)/30

©
)
Q
\_/\_/\5\/ ~—
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2 - Linear stability analysis : Shallow Water Equations

Oui +ug Alul; +cGlhli = 0 " » -
. i g — S(G) tgw At At
Neumann analysis : . ~ w = C— ade = UQ ——
von Neu ysi i lads — S(A) fade g CAy Had Uo A

S(G°%) = 2isin(0/2)

S(A“?) isinf 0= kA

S(ACY) = i(8sinf — sin26)/6 v

S(AYP3) = (8sinf — sin 20)/6 + 8sin(8/2)*/6

S(AVFD) i(sin 360 — 9sin 20 + 45sin#) /30 — (cos 3¢ — 6 cos 260 + 15cosf — 10)/30

Apply LFRA+BC and RK3+FB schemes, write in matrix form, compute A~ (6, Lgw, Mfadv)
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2 - Linear stability analysis : Shallow Water Equations

max |’\:t (03 Hgw Madv)l =1

0<O0<m
L8 LFRA(e = 0.1, y=0 ) stability . 8LFRA(£ =0.1, y=1/4 ) stability
— —
1.6 1 --- C4 1.6 1 --- C4
—-- Split-UP3 —-- Split-UP3
1.44 e Split-UP5 | 1.44 e Split-UP5
1.2 - 1.2 -
1.0 A 1.0 A
0.8 0.8 1
0.6 0.6 -
0.4 0.4 1
0.2 0.2 -
O-O T T T I 0.0 T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Hgw HMgw

RK3(y = 0) stability

RK3(y = 1/6) stability

1.6 N\

1.4,
1.2

1.0 A

Maadv

0.8

0.6

0.4

0.2

0.0

0.00

1.6 N\

1.4 1-,

1.2 1

1.0 A

0.8

0.6

0.4 1

0.2

0.50 0.75 1.00

Hgw

0.25

0.0
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0.50 0.75 1.00

Hgw

0.25

e for pure GW, the stability limit is half the limit of the semi-discrete analysis,

* the stability of GW and advection is very sensitive to advection scheme :
e for both LFRA and RKS, the use of C4 decreases the stability limit w.r.t C2,
* for LFRA, the stability limit with Split-UP3 and Split-UP5 is even smaller,
* for RK3, there is a marked ‘overshoot’ of stability with UP3 and UPS5.




3 - Linear stability analysis : Hydrostatic Primitive Equations

Usual practice in split ocean models : do not integrate the true barotropic mode but

1 1 0
Oiu + g0.m —— 0y ( / Ph dz)
PO H J_pg

the red term is a "slow" term absent from the normal mode analysis,
In practice, this term is kept frozen during the barotropic integration,
but it contains fast contributions -> source of instability for the barotropic integration

barotropic/baroclinic corrections have to be done to ensure their compatibility

dissipation within the barotropic mode is necessary to stabilize the integration
dissipation can be introduced through averaging filter or dissipative time stepping



3 - Linear stability analysis : Hydrostatic Primitive Equations

NEMO LFRA-based mode-splitting algorithm (cf NEMO Book)

k=0 \ k=2 nn_baro k=icycle }
|
k=0 =< g >4 4 . < 7 St+At
G° < ha»
N =0 =<n > < >tHd
: : >
t-At t+At

ut = 1 & h,u, »
(H+<n >t) e

PtHat —< gy St+AL



3 - Linear stability analysis : Hydrostatic Primitive Equations

RK3-based mode-splitting algorithm : 1st stage coupled

[ ﬂn : nnz ‘: ﬂ'rz +1 : nn‘ t 1:’

: — 1 n -+ L n—T—l
s N\ n 3 2 s N\
‘\ un, pn’ At ‘\unﬁ—l,pn+1/’

0 0
i/ u"ts dz = 4" —/ Widz =< u>
H —H



3 - Linear stability analysis : Hydrostatic Primitive Equations

RK3-based mode-splitting algorithm : 3rd stage coupled

‘: an: nnz ‘:ﬂn—kl, nn+l:'

[ |
1 1
n n + g n + ’é’ n+1
— u 3 Az = U
H —H 1 0 1
1 0 1 — T dz =< U >
_/ un+2 dZ — ,&n H —H
H —H



3 - Linear stability analysis : Hydrostatic Primitive Equations

Demange etal. 2019 proposed a framework to study the stability of mode-splitting algorithms

* express in terms of normal modes the components of the splitting algorithm
* build the step-multiplier matrix for each vertical mode

hq n+1:A3d hq n_{_c ZV (Azd_Asd) hp "
Uq T \uq ! - P Pl \up



3 - Linear stability analysis : Hydrostatic Primitive Equations

Demange etal. 2019 proposed a framework to study the stability of mode-splitting algorithms

e express in terms of normal modes the components of the splitting algorithm
* build the step-multiplier matrix for each vertical mode
* restricting attention to the barotropic and 1st baroclinic modes

n+1
ho\
U _ Agd + Co Vi Agd — Agd)
h1 C1Vo (A(Q) - Agd)

CoVi (A2 — A434)
A:fd + C1\1 (A%d - A:fd)

|

1o

hi
\u1/

n



3 - Linear stability analysis : Hydrostatic Primitive Equations

Demange etal. 2019 proposed a framework to study the stability of mode-splitting algorithms

e express in terms of normal modes the components of the splitting algorithm

build the step-multiplier matrix for each vertical mode

* restricting attention to the barotropic and 1st baroclinic modes

(h()\ n+1
uop

hi
\u1/

C1Vo (A5 — A7Y)

_ !Agd + CoVo Agd — Agd)

CoVi (A2 — A434)
A:fd + C1\1 (A%d - A:fd)

* compute the eigenvalues for the split-RK3 :

e with mode-splitting at the 1st stage,
e correction at n+1/3 with transport at n,

|

1o

h1
\u1/

* and the 2d integration being integrated without dispersion errors but the
dissipation of the dissipative Forward-Backward scheme (cf Demange etal. 2019)

n



3 - Linear stability analysis : Hydrostatic Primitive Equations

Barotropic mode amplitude error Barotropic mode phase error

1.0 -
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0.2 H =4000 m
g =9.81 m.s-2
0.0 - | | | | |
0 10 20 0 10 20
Mo Ho cO/c1 =15.6
Baroclinic mode amplitude error Nsplit = 20
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M1

the baroclinic time step has not to be reduced from the stability limit of the RK3 scheme



4 - An idealized test-case

t initial t final
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c0/c1 =77.8



4 - An idealized test-case

t initial t final
Nrer 0.2
Uner -0.2
aswas W ,5 ©
el e
Pref le
N =2.10-3 s-1
H=4000 m
g=9.81 m.s-2
c0/c1=77.8
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le-

le-

split-LFRA

dt = 627s
Nsplit = 80
theta = 0.2

split-RK3

dt = 1254s
Nsplit = 80
theta = 0.2



Preliminary conclusions

* the stability analysis of the fully discrete combined GW-advection problem
confirms that RK3+FB is an attractive alternative to LFRA,

* the stability analysis of the mode-splitting algorithm indicates that a
dissipative 2d integration scheme is able to stabilise the 1st-stage coupled
split-RK3 prototype,

* first numerical experiments with the 1st-stage coupled split-RK3 prototype
show benefits in term of accuracy/stability w.r.t the split-LFRA






