

M₂ internal-tide generation in STORMTIDE2

Jin-Song von Storch & Zhuhua Li

Hamburg COMMODORE Conference, Jan 28-31, 2020

M₂ internal-tide generation in STORMTIDE2

Jin-Song von Storch & Zhuhua Li

- How to accurately estimate internal-tide generation?
 - with focus on the understanding
- How is M₂ internal-tide generated in STORMTIDE2?
 - MPIOM, 0.1° resolution
 - driven by the full lunisolar tidal potential + 6 hourly NCEP forcing

Hamburg COMMODORE Conference, Jan 28-31, 2020

Based on work done by a form drag

(Bell, 1975, Llewellyn Smith & Young 2002, Nycander 2005, Vic, et al. 2019,...):

 $\mathcal{P} = -\mathbf{U}_H \cdot \left(p_{-d}^i \nabla d \right)$ $p_{-d}^i \text{: internal-tide pressure at } z = -d$ $\mathbf{U}_H = (U, V)\text{: the tidal velocity}$

abla: horizontal differential operator

Based on work done by a form drag (Bell, 1975, Llewellyn Smith & Young 2002, Nycander 2005, Vic, et al. 2019,...):

 $\mathcal{P} = -\mathbf{U}_H \cdot \left(p_{-d}^i \nabla d\right)$ $p_{-d}^i: \text{ internal-tide pressure at } z = -d$ $\mathbf{U}_H = (U, V): \text{ the tidal velocity}$

abla: horizontal differential operator

Based on conversion from barotropic energy to baroclinic energy (Niwa & Hibiya, 2004, Kang & Fringer, 2012, Müller, 2013,...):

$$\mathscr{C} = \overline{g\rho'W}$$
$$\overline{(\cdot)} = \int_{-d}^{\eta} \cdot dz$$
$$\nabla_H \cdot \mathbf{U}_H + \frac{\partial W}{\partial z} = 0$$

Based on work done by a form drag (Bell, 1975, Llewellyn Smith & Young 2002, Nycander 2005, Vic, et al. 2019,...):

 $\mathcal{P} = -\mathbf{U}_H \cdot \left(p_{-d}^i \nabla d \right)$ $p_{-d}^i : \text{ internal-tide pressure at } z = -d$ $\mathbf{U}_H = (U, V): \text{ the tidal velocity}$

abla: horizontal differential operator

Based on conversion from barotropic energy to baroclinic energy (Niwa & Hibiya, 2004, Kang & Fringer, 2012, Müller, 2013,...):

$$\mathscr{C} = \overline{g\rho'W}$$
$$\overline{(\cdot)} = \int_{-d}^{\eta} \cdot dz$$
$$\nabla_H \cdot \mathbf{U}_H + \frac{\partial W}{\partial z} = 0$$

The two concepts should lead to the same result!?

- using semi-analytical solution, assuming weak topography and small tidal excursion
- decomposing the full (observed or simulated) pressure p to get p^i

- using semi-analytical solution, assuming weak topography and small tidal excursion
- decomposing the full (observed or simulated) pressure p to get p^i

- Kelly et al. 2010 assume $p = p^i + p^s$ and summarize 5 different methods: $p^s = P + \hat{p}, \ p^i = p' - \hat{p}$ where $P = \frac{1}{h}\overline{p}, \ p' = p - P$

- using semi-analytical solution, assuming weak topography and small tidal excursion
- decomposing the full (observed or simulated) pressure p to get p^i

- Kelly et al. 2010 assume $p = p^i + p^s$ and summarize 5 different methods:

$$p^{s} = P + \hat{p}, p^{i} = p' - \hat{p}$$
 where $P = \frac{1}{h}\overline{p}, p' = p - P$

- The method with $\hat{p}=0$ "provides physical interpretable conversion but also contains an error"

- using semi-analytical solution, assuming weak topography and small tidal excursion
- decomposing the full (observed or simulated) pressure p to get p^i

- Kelly et al. 2010 assume $p = p^i + p^s$ and summarize 5 different methods: $p^s = P + \hat{p}, p^i = p' - \hat{p}$ where $P = \frac{1}{h}\overline{p}, p' = p - P$

- The method with $\hat{p}=0$ "provides physical interpretable conversion but also contains an error"

- They suggest to use $\hat{p}(x, y, z)$ that describes the isophycnal heaving due to free surface movement $\longrightarrow \mathscr{P}$ is the IT generation

- General procedure used in an energy consideration (Simmons et al. 2004, Kang & Fringer 2012, Kelly et al. 2010),...):
 - 1. Derive the equations of \mathbf{U}_H and \mathbf{u}'_H
 - 2. Derive the (kinetic) energy equations of \mathbf{U}_H and \mathbf{u}'_H
 - 3. Depth-integrate the energy equations

- General procedure used in an energy consideration (Simmons et al. 2004, Kang & Fringer 2012, Kelly et al. 2010),...):
 - 1. Derive the equations of \mathbf{U}_H and \mathbf{u}'_H

$$\implies p'_{\eta} \nabla \eta + p'_{-d} \nabla d$$

- 2. Derive the (kinetic) energy equations of \mathbf{U}_H and \mathbf{u}'_H
- 3. Depth-integrate the energy equations

• General procedure used in an energy consideration (Simmons et al. 2004, Kang & Fringer 2012, Kelly et al. 2010),...):

 $\implies p'_{\eta} \nabla \eta + p'_{-d} \nabla d$

- 1. Derive the equations of \mathbf{U}_H and \mathbf{u}'_H
- 2. Derive the (kinetic) energy equations of U_H and $u'_H \longrightarrow (U_H \cdot (p'_\eta \nabla \eta) + U_H \cdot (p'_{-d} \nabla d))/H$
- 3. Depth-integrate the energy equations

- General procedure used in an energy consideration (Simmons et al. 2004, Kang & Fringer 2012, Kelly et al. 2010),...):
 - 1. Derive the equations of \mathbf{U}_H and \mathbf{u}'_H
 - 2. Derive the (kinetic) energy equations of \mathbf{U}_H and \mathbf{u}'_H
 - 3. Depth-integrate the energy equations

$$p_{\eta}' \nabla \eta + p_{-d}' \nabla d (\mathbf{U}_{H} \cdot (p_{\eta}' \nabla \eta) + \mathbf{U}_{H} \cdot (p_{-d}' \nabla d))/H \overline{\frac{\partial p'W}{\partial z}} - \overline{\frac{\partial p'W}{\partial z}} = \overline{p'} \frac{\partial W}{\partial z} - \overline{g\rho'W} - (p'W)_{\eta} + (p'W)_{-d}$$

- General procedure used in an energy consideration (Simmons et al. 2004, Kang & Fringer 2012, Kelly et al. 2010),...):
 - 1. Derive the equations of \mathbf{U}_H and \mathbf{u}'_H
 - 2. Derive the (kinetic) energy equations of \mathbf{U}_{H} and \mathbf{u}'_{H}
 - 3. Depth-integrate the energy equations

$$p_{\eta}' \nabla \eta + p_{-d}' \nabla d (\mathbf{U}_{H} \cdot (p_{\eta}' \nabla \eta) + \mathbf{U}_{H} \cdot (p_{-d}' \nabla d))/H \overline{\frac{\partial p'W}{\partial z}} - \overline{\frac{\partial p'W}{\partial z}} = \overline{p'} \frac{\partial W}{\partial z} - \overline{g\rho'W} - (p'W)_{\eta} + (p'W)_{-d}$$

• When decomposing w = W + w' following Kang and Fringer 2012:

$$\nabla_H \cdot \mathbf{U} + \frac{\partial W}{\partial z} = 0$$
$$W_\eta = \frac{\partial \eta}{\partial t} + \mathbf{U}_H \cdot \nabla \eta, \quad \text{at } z = \eta$$
$$W_{-d} = -\mathbf{U}_H \cdot \nabla_H d, \quad \text{at } z = -d$$

- General procedure used in an energy consideration (Simmons et al. 2004, Kang & Fringer 2012, Kelly et al. 2010),...):
 - 1. Derive the equations of \mathbf{U}_H and \mathbf{u}'_H
 - 2. Derive the (kinetic) energy equations of \mathbf{U}_{H} and \mathbf{u}'_{H}
 - 3. Depth-integrate the energy equations

$$p_{\eta}' \nabla \eta + p_{-d}' \nabla d (\mathbf{U}_{H} \cdot (p_{\eta}' \nabla \eta) + \mathbf{U}_{H} \cdot (p_{-d}' \nabla d)) / H = \frac{\overline{\partial p'W}}{\partial z} - \frac{\overline{\partial p'W}}{\partial z} = \overline{p'} \frac{\partial W}{\partial z} - \overline{g\rho'W} - (p'W)_{\eta} + (p'W)_{-d}$$

• When decomposing w = W + w' following Kang and Fringer 2012:

$$\nabla_H \cdot \mathbf{U} + \frac{\partial W}{\partial z} = 0$$
$$W_\eta = \frac{\partial \eta}{\partial t} + \mathbf{U}_H \cdot \nabla \eta, \quad \text{at } z = \eta$$

 $W_{-d} = -\mathbf{U}_H \cdot \nabla_H d$, at z = -d

- form drags cancel $(p'W)_\eta$ and $(p'W)_{-d}$
- $\mathscr{C} = \overline{g\rho'W}$ is the IT generation
 - No cancelation when using any other decomposition (e.g. in Kelly et al. 2010)

Using the density decomposition $\rho = \rho_{\circ} + \rho_b(x, y, z) + \rho'(x, y, z, t)$, the hydrostatic pressure is decomposed as $p = p_{\circ} + p_b(x, y, z) + p'(x, y, z, t)$ with

$$\frac{\partial \mathbf{u}_H}{\partial t} = -\frac{1}{\rho_{\circ}} \nabla p' + \cdots$$

Using the density decomposition $\rho = \rho_{\circ} + \rho_b(x, y, z) + \rho'(x, y, z, t)$, the hydrostatic pressure is decomposed as $p = p_{\circ} + p_b(x, y, z) + p'(x, y, z, t)$ with $\partial \mathbf{u}_H = -\frac{1}{\nabla p'} + \cdots$

$$\frac{\partial t}{\partial t} = -\frac{\partial}{\rho_{\circ}} \sqrt{\rho} + \frac{\partial}{\partial t} \frac{\partial}{\partial t}$$

One has, with
$$\overline{(\cdot)} = \overline{(\cdot)}/H$$
 and $p'' = p' - \overline{p'}$,

$$\frac{\partial \mathbf{U}_{H}}{\partial t} = -\frac{1}{\rho_{\circ}} \nabla \overline{p'} + \frac{1}{\rho_{0}H} \left(p_{\eta}'' \nabla \eta + p_{d}'' \nabla d \right) + \cdots$$
coupling terms
and

$$\frac{\partial \mathbf{u}_{H}'}{\partial t} = -\frac{1}{\rho_{\circ}} \nabla p'' - \frac{1}{\rho_{0}H} \left(p_{\eta}'' \nabla \eta + p_{d}'' \nabla d \right) + \cdots$$

coupling terms

Using the density decomposition $\rho = \rho_{\circ} + \rho_b(x, y, z) + \rho'(x, y, z, t)$, the hydrostatic pressure is decomposed as $p = p_{\circ} + p_b(x, y, z) + p'(x, y, z, t)$ with $\frac{\partial \mathbf{u}_H}{\partial t} = -\frac{1}{\rho_{\circ}} \nabla p' + \cdots$

One has, with
$$\overline{(\cdot)} = \overline{(\cdot)}/H$$
 and $p'' = p' - \overline{p'}$,

$$\frac{\partial \mathbf{U}_H}{\partial t} = -\frac{1}{\rho_{\circ}} \nabla \overline{p'} + \frac{1}{\rho_0 H} \left(p_{\eta}'' \nabla \eta + p_d'' \nabla d \right) + \cdots$$
coupling terms
and

$$\frac{\partial \mathbf{u}'_H}{\partial t} = -\frac{1}{\rho_{\circ}} \nabla p'' - \frac{1}{\rho_0 H} \left(p_{\eta}'' \nabla \eta + p_d'' \nabla d \right) + \cdots$$
coupling terms

• Apart from the coupling terms, \mathbf{U}_H is determined by $\overline{\overline{p'}}$ and \mathbf{u}'_H is determined by p''

$$\longrightarrow p^i = p''$$

• No room for
$$\hat{p}(x, y, z)$$

C contains the energy conversion **throughout the water column**:

C contains the energy conversion **throughout the water column**:

$$\mathscr{C} = \overline{g\rho'W} = -\frac{\overline{\partial p'}}{\partial z}W = -\frac{\overline{\partial p''}}{\partial z}W = -\frac{\overline{\partial p''W}}{\partial z}$$
$$= -(p''W)_{\eta} + (p''W)_{-d}$$
$$= -\left(p''_{\eta}\frac{\partial \eta}{\partial t} + \mathbf{U}_{H} \cdot (p''_{\eta}\nabla\eta)\right) \underbrace{-\mathbf{U}_{H} \cdot (p''_{-d}\nabla d)}_{\mathscr{C}_{bottom} = \mathscr{P}}$$

note:
$$\frac{\partial p'}{\partial z} = \frac{\partial p''}{\partial z}$$
, $\overline{p''} = 0$

C contains the energy conversion **throughout the water column**:

$$\mathscr{C} = \overline{g\rho'W} = -\frac{\overline{\partial p'}}{\partial z}W = -\frac{\overline{\partial p''}}{\partial z}W = -\frac{\overline{\partial p''W}}{\partial z} \quad \text{note:} \frac{\partial p'}{\partial z} = \frac{\partial p''}{\partial z}, \ \overline{p''} = 0$$
$$= -(p''W)_{\eta} + (p''W)_{-d}$$
$$= -\left(p_{\eta}''\frac{\partial \eta}{\partial t} + \mathbf{U}_{H} \cdot (p_{\eta}''\nabla\eta)\right) \underbrace{-\mathbf{U}_{H} \cdot (p_{-d}''\nabla d)}_{\mathscr{C}_{bottom} = \mathscr{P}}$$

- \mathscr{C} includes the from drags induced by p'' at both the surface and the bottom: $\mathscr{C} = \mathscr{C}_{surface} + \mathscr{C}_{bottom}$ with $\mathscr{C}_{bottom} = \mathscr{P}$
- When concentrating on the IT-generation at the bottom, the effect due to surface form drag has to be excluded (as suggested by Kelly et al. 2010, but not via an additional \hat{p})

IT-generation in STORMTIDE2: horizontal variations of $|\mathbf{U}_H|$ in m/s

IT-generation in STORMTIDE2: horizontal variations of $|\mathbf{U}_H|$ in m/s

• Larger $|\mathbf{U}_H|$ in the Atlantic than in the Pacific

IT-generation in STORMTIDE2: horizontal variations of $|\mathbf{U}_H|$ in m/s

IT-generation in STORMTIDE2: p''_{-d} in N/m²

IT-generation in STORMTIDE2: p''_{-d} in N/m²

IT-generation in STORMTIDE2: p''_{-d} in N/m²

p["]_{-d} is affected by both |U_H| and ∇d
The effect of |U_H| seems to be more direct than that of ∇d

IT-generation in STORMTIDE2: phase of p''

IT generation = work done by the bottom form drag?

IT-generation in STORMTIDE2: phase of p''IT generation = work done by the bottom form drag?

IT-generation in STORMTIDE2: phase of p''IT generation = work done by the bottom form drag?

- Bottom form drag is at work: p''_{-d} drops from the windward to the leeward side
- ~ 180° phase shift from the windward to the leeward side

IT-generation in STORMTIDE2: \mathscr{P} in W/m²

Global: 0.7 TW

IT-generation in STORMTIDE2: \mathscr{P} in W/m²

Global: 0.7 TW

IT-generation in STORMTIDE2: \mathscr{P} in W/m²

- \mathscr{P} is controlled by both $|\mathbf{U}_{H}|$ and ∇d
- The control of $|\mathbf{U}_H|$ seems to be more direct than that of ∇d

IT-generation in STORMTIDE2: depth structure in different basins in W/m² (At which depth is the strongest IT-generation located?)

IT-generation in STORMTIDE2: depth structure in different basins in W/m² (At which depth is the strongest IT-generation located?)

- The Indo-Pacific is heated from above
- The Atlantic is heated from below

Conclusions concerning our understanding:

- Energy consideration depends on the decomposition of \boldsymbol{W}
- \bullet The energy conversion ${\mathscr C}$ contains the work done by the bottom form drag

 $\mathscr{C}_{bottom} = \mathscr{P}$ and the work by the surface form drag $\mathscr{C}_{surface}$

- $\mathscr{C}_{surface}$ is about 1% of \mathscr{P} in STORMTIDE2 (Note $p_{atm} = 0$ in MPIOM)
- $p^i = p'' = p' \overline{p'}$

Conclusions concerning our understanding:

- Energy consideration depends on the decomposition of W
- \bullet The energy conversion ${\mathscr C}$ contains the work done by the bottom form drag

 $\mathscr{C}_{bottom} = \mathscr{P}$ and the work by the surface form drag $\mathscr{C}_{surface}$

- $\mathscr{C}_{surface}$ is about 1% of \mathscr{P} in STORMTIDE2 (Note $p_{atm} = 0$ in MPIOM)
- $p^i = p'' = p' \overline{p'}$

Conclusions concerning IT-generation in STORMTIDE2:

- Bottom form drag is at work
- \mathscr{P} is more directly controlled by $|\mathbf{U}_{\!H}|$
- The strongest IT-generation is located at about 3000 m in the Atlantic, but at about 500 m in the Indo-Pacific

Conclusions concerning our understanding:

- Energy consideration depends on the decomposition of \boldsymbol{W}
- \bullet The energy conversion ${\mathscr C}$ contains the work done by the bottom form drag

 $\mathscr{C}_{bottom} = \mathscr{P}$ and the work by the surface form drag $\mathscr{C}_{surface}$

- $\mathscr{C}_{surface}$ is about 1% of \mathscr{P} in STORMTIDE2 (Note $p_{atm} = 0$ in MPIOM)
- $p^i = p'' = p' \overline{p'}$

THANKS!

Conclusions concerning IT-generation in STORMTIDE2:

- Bottom form drag is at work
- \mathscr{P} is more directly controlled by $|\mathbf{U}_{\!H}|$
- The strongest IT-generation is located at about 3000 m in the Atlantic, but at about 500 m in the Indo-Pacific

Bottom pressure of M2 internal tide in STORMTIDE2 [N/m²]

M. Böttinger

(C) DKRZ / MPI-M 01.01.01 00:00

