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e How to accurately estimate internal-tide generation?
- with focus on the understanding

e How is My internal-tide generated in STORMTIDE2?
- MPIOM, 0.1° resolution

- driven by the full lunisolar tidal potential + 6 hourly NCEP forcing
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Based on work done by a form drag
(Bell, 1975, Llewellyn Smith & Young 2002,
Nycander 2005, Vic, et al. 2019,...):
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pid: internal-tide pressure at 7 = — d
Uy = (U, V): the tidal velocity

V: horizontal differential operator
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Known: Two concepts of IT-generation

Based on work done by a form drag Based on conversion from barotropic energy
(Bell, 1975, Llewellyn Smith & Young 2002, to baroclinic energy
Nycander 2005, Vic, et al. 2019,...): (Niwa & Hibiya, 2004, Kang & Fringer, 2012,
Miiller, 2013,...):
P =-Uy- (pidVd) € = gp'W
: L n
p_;:internal-tide pressure at 7 = — d (-)= [ - dz
“ow
Uy = (U, V): the tidal velocity V- Uy + P 0

V: horizontal differential operator

The two concepts should lead to
the same result!?
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Known: different ways to determine pi

e using semi-analytical solution, assuming weak topography and small tidal excursion

e decomposing the full (observed or simulated) pressure p to getp’
- Kelly et al. 2010 assume p = p' + p* and summarize 5 different methods:

. 1
pP=P+p,p'=p' —p whereP=;]7,p'=p—P

- The method with p = 0 ,provides physical interpretable conversion but
also contains an error"

- They suggest to use p(x, y, z) that describes the isophycnal heaving due to
free surface movement = < is the IT generation
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Do energy considerations always lead to the same result?

e General procedure used in an energy consideration (Simmons et al. 2004, Kang &
Fringer 2012, Kelly et al. 2010),...):

1. Derive the equations of U, and u’y — p,Vn+p. ,Vd

2. Derive the (kinetic) energy equations of U, and u'’y —» Uy - (p, Vi) + Uy - (p_,Vd))/H
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Do energy considerations always lead to the same result?

e General procedure used in an energy consideration (Simmons et al. 2004, Kang &
Fringer 2012, Kelly et al. 2010),...):

1. Derive the equations of Uy and u'y —» pyVn+p., Vd
2. Derive the (kinetic) energy equations of U, and u'’y —» Uy - (p, Vi) + Uy - (p_,Vd))/H
3. Depth-integrate the energy equations —» op'W op'W
0z 0z
_/aW PNNGT 4 / /
A W—(p'W),+(p'W)_,
e When decomposing w = W + w’ following Kang and Fringer 2012:
ow
Vi U; o =V - form drags cancel (p'W), and (p'W)_,
n _
Wy=— +Un- Vi, atz=n ¥ . & = gp'W is the IT generation
W ,=-U,-Vyd, atz=-d - No cancelation when using any other

decomposition (e.g. in Kelly et al. 2010)
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Pressure decomposition

Using the density decomposition p = p, + p,(x,y,2) + p'(x, ¥, 2, 1), the hydrostatic
pressure is decomposed as p = p, + p,(x,y,z) + p'(x,y, z, t) with

ou 1
_H — — _Vp/ + ...
ot Pa
One has, with (- )=(-)/Handp” =p' - p,
aI‘JH _ 1 V=/ 1 AV, "V d
ot ol p +P0H <p,7 N+ Pq ) te e Apart from the coupling
coupling terms terms, U, is determined by?
and and uy, is determined by p”
ou; 1 1 R
e A (AL R AL —>p'=p
ot P poH e No room for p(x, y, z)

coupling terms
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€ contains the energy conversion throughout the water column:
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Relation between ¢ and &

€ contains the energy conversion throughout the water column:

o op” op"W o’ _dp" —
E = "W==-——W==——W=-— note: = ) =0
8P 07 07 07 07 07 P

= — (p'W), + (p"W)_y

7 aﬂ " "

(gbottong)
€

surface

e @ includes the from drags induced by p” at both the surface and
the bottom: € = € ,,,cc + Crortom With € ppm = P
e When concentrating on the IT-generation at the bottom, the

effect due to surface form drag has to be excluded (as suggested
by Kelly et al. 2010, but not via an additional p)



IT-generation in STORMTIDE2: horizontal variations of |Uy| in m/s



IT-generation in STORMTIDE2: horizontal variations of |Uy| in m/s

= o S, T
S

HWH|||||||||H|||||||||||__

I
150°E

0.06

0.057
0.054
0.051
0.048
0.045
0.042
0.039
0.036
0.033
0.03

0.027

0.024

0.021

0.018

0.015

0.012

0.001

e Larger | Uy |in the Atlantic
than in the Pacific



IT-generation in STORMTIDE2: horizontal variations of |Uy| in m/s
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IT generation = work done by the bottom form drag?
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IT-generation in STORMTIDE2: & in W/m?2

e P is controlled by both |U,| and Vd
e The control of | U;;| seems to be more

direct than that of Vd
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Conclusions concerning our understanding:
e Energy consideration depends on the decomposition of w
e The energy conversion € contains the work done by the bottom form drag
Cronom = < and the work by the surface form drag %Wface
o B gurface I about 1% of P in STORMTIDE2 (Note p,,,, = 0 in MPIOM)
ep'=p'=p-p
THANKS!
Conclusions concerning IT-generation in STORMTIDE2:
e Bottom form drag is at work
e & is more directly controlled by | U |

e The strongest IT-generation is located at about 3000 m in the Atlantic, but at about
500 m in the Indo-Pacific
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