
M2 internal-tide generation in STORMTIDE2

Jin-Song von Storch & Zhuhua Li

Hamburg COMMODORE Conference, Jan 28-31, 2020



M2 internal-tide generation in STORMTIDE2

Jin-Song von Storch & Zhuhua Li

Hamburg COMMODORE Conference, Jan 28-31, 2020

• How to accurately estimate internal-tide generation?  
    - with focus on the understanding 
• How is M2 internal-tide generated in STORMTIDE2? 
    - MPIOM, 0.1° resolution 
    - driven by the full lunisolar tidal potential + 6 hourly NCEP forcing
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: the tidal velocityUH = (U, V )

( ⋅ ) = ∫
η

−d
⋅ dz

∇H ⋅ UH +
∂W
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= 0

The two concepts should lead to 
the same result!?

 : horizontal differential operator∇
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Known: different ways to determine pi

• using semi-analytical solution, assuming weak topography and small tidal excursion 
• decomposing the full (observed or simulated) pressure  to get  p pi

- Kelly et al. 2010 assume  and summarize 5 different methods: p = pi + ps

ps = P + ̂p, pi = p′ − ̂p where P =
1
h

p, p′ = p − P

- The method with  „provides physical interpretable conversion but 
also contains an error“

̂p = 0

- They suggest to use  that describes the isophycnal heaving due to 
free surface movement              is the IT generation              

̂p(x, y, z)
𝒫
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- form drags cancel  and  

-   is the IT generation 
- No cancelation when using any other 

decomposition (e.g. in Kelly et al. 2010)

(p′ W )η (p′ W )−d

𝒞 = gρ′ W
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• Apart from the coupling 
terms,  is determined by  
and  is determined by  

                     
• No room for 

UH p′ 
u′ H p′ ′ 

pi = p′ ′ 
̂p(x, y, z)
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•  includes the from drags induced by  at both the surface and 
the bottom:  with  

• When concentrating on the IT-generation at the bottom, the 
effect due to surface form drag has to be excluded (as suggested 
by Kelly et al. 2010, but not via an additional )

𝒞 p′ ′ 
𝒞 = 𝒞surface + 𝒞bottom 𝒞bottom = 𝒫

̂p
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contours: topography in m

• Larger in the Atlantic 
than in the Pacific 

• O(10) change in  within 
a short distance

|UH |

|UH |



IT-generation in STORMTIDE2:  in N/m2p′ ′ −d



IT-generation in STORMTIDE2:  in N/m2p′ ′ −d



IT-generation in STORMTIDE2:   in N/m2p′ ′ −d

•  is affected by both  and  
• The effect of  seems to be more 
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• Bottom form drag is at work:  drops from the 
windward to the leeward side 

• ~ 180° phase shift from the windward to the 
leeward side 

p′ ′ −d

IT-generation in STORMTIDE2:  phase of    
IT generation =  work done by the bottom form drag?

p′ ′ 
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IT-generation in STORMTIDE2:   in W/m2𝒫

• Extremely localized

Global: 0.7 TW
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•  is controlled by both  and  
• The control of  seems to be more 

direct than that of
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IT-generation in STORMTIDE2:  depth structure in different basins in W/m2 

(At which depth is the strongest  IT-generation located?)
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• The Indo-Pacific is heated from above 
• The Atlantic is heated from below
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