Representing the <u>mesoscale</u> horizontal diffusion of tracers within the boundary layers of general vertical coordinate ocean models

<u>Gustavo Marques</u>, Andrew Shao, Scott Bachman, Keith Lindsay, Gokhan Danabasoglu and Frank Bryan (gmarques@ucar.edu)

Hamburg COMMODORE Conference

NSF

January 30, 2020

Motivation

Conceptual model of eddy fluxes in the upper ocean

From: Ferrari et al., 2008

Extreme surface salinity in fully-coupled simulations

We were compelled to follow previous conceptual model hoping to minimize this issue

Goal: represent the lateral diffusive tracer fluxes due to mesoscale eddies within the boundary layers of general vertical coordinate ocean models

Lateral		Neutral				
$\kappa_L = \kappa \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\kappa_n = \kappa \begin{bmatrix} 1\\0\\S_y \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ S_x \end{array}$	$\begin{bmatrix} S_x \\ S_y \\ S_x^2 + S_y^2 \end{bmatrix}$			

Methods proposed

- Layer by layer: more straight forward, diffusion is applied layer by layer using only information from neighboring cells
- <u>Bulk approach</u>: lower order representation (Kraus-Turner like), assumes eddies are acting along well mixed layers (i.e., eddies don't know about vertical tracer profiles within the boundary layer)
- Pressure construction: purely diabatic mixing using ALE reconstructions

Method #2: Layer by layer approach

1) vertical indices containing boundary layer (k=4,3)

2) calculate diffusive flux at each layer

 $F(k) = -\kappa_u \times h_{eff}(k) \times [\phi_R(k) - \phi_L(k)] \longrightarrow \text{ always down-gradient } \phi_R > \phi_L$

 $h_{eff}(k) = \frac{2 \times h_L(k) \times h_R(k)}{h_L(k) + h_R(k)} \longrightarrow$ harmonic mean of thicknesses at each layer, special care at k_min = min(4,3)

Method #1: Bulk approach

1) vertical indices containing boundary layer (k=4,3) 2) calculate bulk (thickness weighted) tracer averages, $\overline{\phi}$ 3) calculate 'bulk' diffusive flux

$$F_{bulk} = -\kappa_u \times h_{eff} \times (\overline{\phi}_R - \overline{\phi}_L)$$

 \mathbf{h}_{eff} is the harmonic mean: $h_{eff} = rac{2 imes (hbl_L imes hbl_R)}{hbl_L + hbl_R}$

4) decompose F_{bulk} onto individual layers

$$F_{layer}(k) = F_{bulk} \times h_{frac}$$
$$h_{frac} = h_u(k) \times \frac{1}{\sum (h_u)}$$

 h_u is the harmonic mean of thicknesses at each layer, special care at k_min = min(4,3)

Limit tracer flux:

$$F_{max}(z) = -0.2 \times [V_R(k) \times \phi_R(k)] - [V_L(k) \times \phi_L(k)]$$

only apply flux if it is down-gradient

V = cell volume

Module MOM_lateral_boundary_diffusion

Branch	Branch: near_surface_f MOM6 / src / tracer / MOM_lateral_boundary_diffusion.F90		Find	Find file		Copy path			
gustavo-marques Change flux limiting calculation			0525	0525a4c 2 days ago					
2 contributors 🕅 📆									
1128	lines (1009 sloc)	55.1 KB	aw Blame	History			Ī		
1	1 !> Calculates and applies diffusive fluxes as a parameterization of lateral mixing (non-neutral) by								
2 !! mesoscale eddies near the top and bottom (to be implemented) boundary layers of the ocean.									
3									
4	<pre>4 module MOM_lateral_boundary_diffusion</pre>								
5									
6	! This file is p	part of MOM6. See LICENSE.md for the license.							
7									

- Follows MOM6 code style guide
- dOxyGenized
- 19 unit tests (so far)
- Dimensional consistency testing (TODO, waiting for Bob's talk)
- Diagnostics: diffusive flux (x,y; 2D and 3D), tracer tendencies (2D and 3D)

Proof of concept using the Baltic test case

MOM6-examples/ice_ocean_SIS2/Baltic_OM4_05/

- Active ocean/sea ice (MOM6/ SIS2); CORE2
- Nominal 0.5 degree
- Hybrid vertical coordinate (HYCOM-like)
- Setup similar to OM4p5 exp. (Adcroft et al, 2019)
- Tracer diffusivity = 200 m²s⁻¹
- Run for 10 years

Experiments

- Control: neutral diffusion in the interior only, nobundary layer (SBL)
- Neutral diffusion: including within SBL
- LBD_M1: neutral in the interior, lateral in the SBL using Bulk method
- LBD_M2: neutral in the interior, lateral in the SBL using layer method

max=588.99

min=9.5

62

Latitude [°N]

56

54

Depth [m]

20

sion with

Longitude [°E]

Baltic Sea

tirfac

25

Net surface heat forcing and ocean heat content

Lower ocean heat content in the LBD experiments

Instantaneous heat tendency contribution: fixed point

$$\partial_t \theta = \dots + \nabla_h \cdot (\kappa_l \cdot \nabla_h \theta) + \nabla \cdot (\kappa_n \cdot \nabla \theta)$$

Lateral diffusion

+ Neutral diffusion =

Total diffusion

Instantaneous heat tendency contribution: fixed point

$$\partial_t \theta = \dots + \nabla_h \cdot (\kappa_l \cdot \nabla_h \theta) + \nabla \cdot (\kappa_n \cdot \nabla \theta)$$

Lateral diffusion

+ Neutral diffusion =

Total diffusion

Instantaneous heat tendency contribution: horizontal sum

$$\partial_t \theta = \dots + \nabla_h \cdot (\kappa_l \cdot \nabla_h \theta) + \nabla \cdot (\kappa_n \cdot \nabla \theta)$$

Lateral diffusion

+ Neutral diffusion =

Total diffusion

Horizontal mean potential temperature (depth vs time)

Mixed layer depth: Winter (JFM, year 9)

Global ocean/sea ice experiments with CESM/MOM6

- MOM6/CICE5, JRA-55
- Nominal 2/3° grid spacing, equatorial refinement
- Z* vertical coordinate, 63 layers
- Vertical mixing via CVMix (KPP, shear, DD, convection)
- GM and tracer diffusivity = 800 m² s⁻¹

It does not have all the whistles and bells that we want

Experiments

- **Control**: neutral diffusion in the interior only, no diffusion within surface boundary layer (SBL)
- Neutral diffusion: including within SBL
- LBD_M1: neutral in the interior, lateral in the SBL using Bulk method
- LBD_M2: neutral in the interior, lateral in the SBL using layer method

Net surface heat forcing and total heat

Mixed layer depth: Winter (JFM, last 20 years)

Poleward heat transport (mean last 20 years)

Meridional Overturning Circulation (mean last 20 years)

Global

Meridional Overturning Circulation (mean last 20 years)

Atlantic

20

Volume transport in the Drake passage

Summary

- Two methods for applying lateral diffusive tracer fluxes due to mesoscale eddies within the surface boundary layer have been implemented in a general vertical coordinate ocean model (MOM6)
- Tested using "idealized" (Baltic test, hybrid and z*) and global (CESM/ MOM6, z*) experiments
- Both methods lead to qualitatively similar results:
 - · Overall deepening of the surface boundary layer

- Reduction in the total ocean heat content
- Still a lot to be done!

Future work

- Enable LBD in the bottom boundary layer
- Transformation function $D_T = G(Z) \times D_L + [1 G(Z)] \times D_N$

• 3D tracer diffusivities

Thank you!

SSS reduction in a fully-coupled run

time = 1079.5 (days since 0001-01-01 00:00:00)

Sea Surface Salinity (psu)

Mixed layer depth: Summer (JAS, last 20 years)

Mean Summer MLD, JFM(SH), JAS(NH)

$F_{max}(z) = -0.2 \times [V_R(k) \times \phi_R(k)] - [V_L(k) \times \phi_L(k)]$

t = 0

