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Mesoscale eddies in eddy-permitting models 
have too-little energy.

Viscosity is probably partly to blame.

Maybe baroclinic instability is not efficient at 
eddy-permitting resolution?



What are the growth rates of linear baroclinic instability 
in the discrete hydrostatic Eady problem?

Used large Nz to focus on effect of horizontal 
discretization.

Discretizations (2nd order except where noted):
•B Grid, Energy Conserving (POP)
•C Grid, Energy Conserving (MOM6)
•C Grid, Energy & Enstrophy Conserving (NEMO)
(Matlab code to generate matrices is in suppl. mat. of BBG18)



Symmetric Instability: Ri=0.5, Ld = 40 km
(Color=grid size, solid=C, dash=B)

• C Grid is better than B grid at fixed resolution (compare purple)
• C Grid, energy-only and energy/enstrophy are both about 100% 

wrong at grid scale. 



B Grid, Baroclinic:
Growth rates are indeed 
too small at eddy-
permitting resolution.

(Ri = 100, Ld = 40 km)



C Grid, Baroclinic: Growth rates are too large and 
there’s a spurious instability peaked at the grid 
scale that is faster than the main instability!
The two C Grid discretizations are same on the baroclinic axis



C Grid, Baroclinic: Spurious growth rate 
seems to approach a limit as Ri->Infinity. 
Seems to also stay fixed as grid is refined.



C Grid, Baroclinic: 4th order tracer advection 
plus biharmonic viscosity seems to help.



Are the eigenvalues of the linear stability
problem relevant for ocean dynamics?

The mesoscale eddies we’re trying to 
understand are very much not linear.

How do eddies extract energy from the large 
scales in nonlinear baroclinic instability, and how 
is this impacted by discretization?



The following is a generic eddy equation based 
on time averaging

The eddy energy equation is



Eddy energy growth, e.g. through nonlinear baroclinic 
instability, is mediated by a quadratic term in the eddy energy 
budget.

The second derivative of this quadratic function is a self-adjoint 
linear operator that completely describes the structure of the 
energy exchange between mean and eddies.

We examine the structure of this operator, and the effect of 
discretization by finding eigenfunctions (Instantaneous 
Optimals/IOs) and eigenvalues (instantaneous energy growth 
rates).



We find eigenfunctions in the continuous problem by 
optimizing the energy growth rate over perturbations 
with unit energy. The Lagrangian is

Energy:

Energy Growth:



The Euler-Lagrange equations are simple 
to derive:

Easy to solve analytically.



Results are independent of Richardson 
number. 

Large-scale growth dominated by baroclinic 
conversion, even on symmetric axis.

Small-scale growth dominated by shear 
production, even on baroclinic axis, and 
growth rates increase linearly.



Baroclinic Axis:
• Discrete models (color) have lower growth rates than exact 

(black)
• C grid (both versions identical) is slightly better at lower

resolution, but overall quite similar



Symmetric Axis: 
• Discrete models (color) have lower growth rates than exact 

(black) 
• B Grid (blue) is worse than C Grid
• The two C Grid discretizations (red & yellow) are very similar



Thanks!

• Barham, Bachman, and Grooms, Ocean 
Modelling 2018: Linear BCI & Discretization
• Barham and Grooms, Theoretical & 

Computational Fluid Dynamics 2019: Optimals
for Hydrostatic Eady



It’s hard to connect the results on optimals in 
the hydrostatic model to intuition about the 
dynamics.

We eliminate shear production by turning to the 
QG model.

Follow the same procedure: Optimize energy 
growth subject to fixed energy.



We still have strong 
growth at small 
scales, but at least
it’s not growing
without bound.

Barham & Grooms, 
JFM 2020.


