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Coastal upwelling — Central Baltic Sea: July 01 - July 21, 2012
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What happens at the water surface?

Air-Sea Interactions

I Visible radiation ) . )
Linking of atmosphere and ocean via trans-

fer of momentum, heat and gases e.g.

Evaporation l = Wind and atmospheric pressure

generate waves and currents
Ekman transport
apes in the Northem Penetrating

= Hemisphere radiation = Ocean absorbs heat from the sun,

Ocean currents

greenhouse gases like carbon dioxide

Langmuir

circulation = Warming/cooling of the atmosphere
from below

www.eumetsat.int (03.08.2016) ©The COMET Program = TROPOS |
S

—|-eJ \ M , Lelbriz Instiute for
Tropospheric Research
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ICON — ICOsahedral Non-hydrostatic modeling framework (Atmosphere)

= Developed by German Weather Service (DWD)
and Max Planck Institute for Meteorology
(MPI-M)

= Unified modeling system for global numerical
weather prediction (NWP) and climate
modeling

= Flexible grid nesting capability and usage of
non-hydrostatic equations

= Operational weather forecast at DWD (13 km

global + 6.5 km local resolution)
Icosahedral triangular horizontal grid with fairly

= Central Baltic Sea: approx. 2500m )
regional

uniform resolution on sphere and simpl

Zangl et al., 2015; Giorgetta et al., 2018 grld reflnement
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GETM - General Estuarine Transport Model (Baltic Sea)

ma(Bathymetry Balticu%::a = Co-developed at Leibniz Institute for Baltic Sea Research
- (low)

Modeling baroclinic bathymetry-guided flows including

drying and flooding processes

Reproducing baroclinic features such as upwelling, internal
seiches and stratified flows

Simulating flows and transport on larger scales than
estuarine scales, e.g. salt water inflows in the Baltic Sea

Usage of structured rectangular grid

Area of interest: Central Baltic Sea (approx. 600m)

Bathymetry (meters)

3.0 49.0 951 141.1 187.1 233.1 Burchard et al., 2004; Holtermann et al., 2014; Klingbeil et al., 2018
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How are ICON and GETM online coupled?

surface fluxes of momentum,

—) heat and radiation, precipitation,
evaporation, etc.

Earth System ~
ICON Data Modelling Frame-
work (ESMF)

AN

L | sea surface temperature

= Which variables will be exchanged?

= Which time intervals will be suitable for a data exchange?

TROPOS |

e

Lelbriz Instiute for
Tropospheric Research

= Which interpolation method will best fit for a data exchange?
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Realisation of air-sea interactions in ICON & GETM

ICON:

Momentum: X = —p-C|v|-u
o= —p-Chelv-v

Heat:
QR=Qs+ Q+Qp+ Qsw

GETM:

Momentum: X = p-C|v|-u
o = pColvv
Heat: Q=Qs+ Qi+ Qs
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Realisation of air-sea interactions in ICON & GETM

ICON:
Momentum: X = —p-C|v|-u No mass exchange with ocean via precipitation and
J . .
= —p-C|v|-v evaporation due to exact local mass conservation.
Ullrich et al., 2017
Heat:
R=Qs+ Q1+ Qp+ Qsw
GETM:
d
Momentum: T, = p-Culvlu Considering of precipitation and evaporation for fresh
o= p-Cd|v|-v water flux.
Heat: Q=Qs+ Qi+ Qs
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Development of different atmosphere-ocean models

= Models for studies of air-sea interactions

1D: Studying mass, momentum and energy coupling between atmosphere and ocean with a water/air
column model system

2D: Constructing an idealised coupled model system with straight coast and upwelling favourable winds

3D: Fully coupled atmosphere-ocean experiment (Central Baltic Sea with ICONGETM) Bauer et al. in prep.

= Utilising different strategies for asynchronous or synchronous coupling

a) Derivation and application of numerical methods with multirate approaches for idealised
atmosphere-ocean models
b) Online coupling with ESMF for ICONGETM
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Why joined equations for atmosphere-ocean systems?: Continuity equation

Atmosphere: Ocean:
= Dry air (d): = Fresh water (f):
%44V (pg-va) =0 %L LV (psve) = Oy
= All other components k: = Salinity (sa):
Pk 4V« (pi- Vi) = O %2 4 Ve (psaVsa) =0
B+ V- (pA V) =Xlo] = B V- (pOv0) = o
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Why joined equations for atmosphere-ocean systems?: Continuity equation

Atmosphere: Ocean:
= Dry air (d): = Fresh water (f):
P4 4 Ve(py-vg)=0 P+ V- (pr-ve) = 0¢
= All other components k: = Salinity (sa):
Dh £V (pi-vi) = O %2 1V (psaVsa) =0
221V (pA ) =X[ok] =S %2 1 V. (pO.v0) =0y

A
Mass conserving: M +Ve(pAvA+pP-v0)=S+0,=0

Mass conservation of atmosphere-ocean system:
= atmosphere and ocean, each on its own not mass conserving
= compressible and non-hydrostatic set of equation
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General structure of governing equations

@ No difference in generalized equation for atmosphere and ocean:

3(5;//) :—V-(pl//-vT)—i-kgW {—V-(wk-JkT+7Lk)+Gk} (1)

@ M substances (mass density (p) respectively for atmosphere and ocean)
Atmosphere: e.g. dry air, water vapour, rain drops, etc.
Ocean: fresh water and salinity
© VY being a free-variable parameter for
Atmosphere: mass y := 1, flow velocity ¥ :=v” and total energy y := e
Ocean: mass y := 1, flow velocity v :=v© and total energy y := e°

0 Diffusive mass flux (J), flux (1) and external source (o) for yy
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General structure of governing equations

@ No difference in generalized equation for atmosphere and ocean:

a((g);//)_v-(py/-vT)Jrkgw {fv-(wk-JkTJrlk)Jer} (1)

@® General structure of differential equation where equation (1) holds for both, atmosphere and ocean

Yo _£(y)

dy,
=0 A —g(y)

d A
an at g\

dy dyo  dya B
§*W+W*f(Y)+g(Y)*F(Y)

TROPOS |
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Why joined equations for atmosphere-ocean systems?

Advantages:

= Synchronous online coupling
= Direct physical representation of air-sea interactions, i.e. no parameterization at interface

Challenges:

= Supporting different time steps for integration

= Different horizontal resolutions

for both parts, atmosphere and ocean

TROPOS |
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Why joined equations for atmosphere-ocean systems?

Advantages:

= Synchronous online coupling
= Direct physical representation of air-sea interactions, i.e. no parameterization at interface

Challenges:

= Supporting different time steps for integration

= Different horizontal resolutions

for both parts, atmosphere and ocean

= Multirate time integration allow splitting into two and more parts for joined
atmosphere-ocean systems with own characteristic numerical representation.

Tobias Bauer (tobias.bauer@tropos.de) Multirate for coupled AO models

January 29, 2020



Motivation: Coastal upwelling Why joined equations for atmosphere-ocean systems? Multirate methods for geophysical fluid dynamics Conclusions & Outlook
0000000 000 @000 000

Variety of multirate methods in atmosphere and ocean models

Examples of already applied multirate approaches/methods:

= Split-explicit methods for separating stiff and non-stiff components

Predictor-Corrector method for splitting of dynamical core and tracer advection, fast-physics
parametrizations and horizontal diffusion (ICON) Zangl et al, 2015

= Splitting in barotropic-baroclinic modes (e.g. GETM) Klingbeil et al., 2018
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Explicit Runge—Kutta method (eRK)

eRK method for solving of equation % =f(y)+g(y)=F(y):

Z,'(O) = Yn
B i-1 4z .
s yn+hj§1[aUF(Yj)] or dif) = j;l[aij’:(yj)]
Yor1 = yn+h_il[b,-F(Y,-)] Y, = Z(h)
- ynit = Ynth ¥ [6iF (V)
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Multirate infinitesimal step method (MIS)

General idea of MIS for equation (2), i.e. y =f(y)+g(y):

Wensch et al., 2009, Knoth et al., 2014, Bauer et al., 2019
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Multirate infinitesimal step method (MIS)
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Multirate infinitesimal step method (MIS)

General idea of MIS for equation (2), i.e. y =f(y)+g(y):

Wensch et al., 2009, Knoth et al., 2014, Bauer et al., 2019
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Multirate infinitesimal step method (MIS)
General idea of MIS for equation (2), i.e. y =f(y)+g(y): Wensch et al., 2009, Knoth et al., 2014, Bauer et al., 2019
i-1
Zi(0) = yn+_21[06fj(yj*yn)]
J:
dzZ:(t 1i-1 i-1
O = 2 (Yl + X 1B (Y0)]+ dig (2:(2)
dt hJ:l j=1
Y, = Z,(h) i=1,...,s+1
Yor1 = Ysia
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Multirate infinitesimal step method (MIS)

= Further splitting of fast part (e.g. atmosphere) Error convergence: MIS54

possible, i.e.
10°
Na
y=f)+ Y gr(y)
ka—=1 10°
= Example method MIS54: 4th-order  gaeret at. 2010 5102
= Applied to purely atmospheric examples, e.g. o
Cold Bubble Test 107}
= 1D AO simulations with more efficient time
) 6L
step, i.e. 1s and 2s vs. 10s 10 Runge-Kutta 4
*Exponential Matrix
= 2D AO simulations ... e - 2
. . 10° ‘
missing appropriate test cases / benchmark 107 107" 10° 10"

examples for atmosphere-ocean models time step
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= Requirement of correct physical representation of air-sea interaction for high resolved coupled
atmosphere-ocean models, e.g. for ICONGETM

= Studying of air-sea interaction with 1D and 2D scenarios suggest joined atmosphere-ocean
simulations

= MIS method overcomes challanges for joined atmosphere-ocean models

= TROPO!

s
Lelbriz Instiute for
Tropospheric Research

January 29, 2020
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Conclusions

= Requirement of correct physical representation of air-sea interaction for high resolved coupled
atmosphere-ocean models, e.g. for ICONGETM

= Studying of air-sea interaction with 1D and 2D scenarios suggest joined atmosphere-ocean
simulations

= MIS method overcomes challanges for joined atmosphere-ocean models

But: Purely explicit integration of slow part, maybe the ocean,
with the longest time step due to underlying explicit Runge—Kutta method in MIS
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Conclusions & Outlook
[¢] Je

Multirate generalized additive Runge—Kutta method (MGARK)

No N
MGARK method for solving of equation (2), i.e. y = ¥ fi (y)+ ZA gr,(y):
ko=1 ka=1

Giinther et al., 2016
Structure for only two parts:

Sf . N sg
Ynt1=Yn+h ,;1 [b,ff (YI)} + hlgl ,;1 [ml b’-gg (le)]
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Multirate generalized additive Runge—Kutta method (MGARK)

MGARK method for solving of equation (2), i.e. y =f(y)+g(y):

o e W] (@),
z = yn+hz[g”f(Y)]+hleljzl[m/bg (z))]+

h Z [mlag’gg (Z})} , i=1,..,5g, A=1,..N
j=1

vt = yoth T [FV)]+h T T [mbfe (20)

TROPOS |
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