Speaker
Mr
Mahdi Khalili Hezarjaribi
(Institut für Angewandte Physik, Technische Universität Braunschweig)
Description
In this paper, we present a model for detecting GaN pyramids in SEM images which relies on the strong use of data augmentation, due to the complexity of microscopic structures. A procedure has been developed to generate synthetic images for training the algorithm owing to this fact real images are hard to be prepared and labeled. In the next stage, YOLO algorithm has been employed for the object detection process. A minimum confidence of 70% for detecting real objects has been realized together with this fact that test and train accuracy and loss prove significant convergence.
Authors
Prof.
Andreas Hangleiter
(Institut für Angewandte Physik, Technische Universität Braunschweig)
Dr
Bremers Heiko
(Institut für Angewandte Physik, Technische Universität Braunschweig)
Dr
Etzkorn Markus
(Institut für Angewandte Physik, Technische Universität Braunschweig)
Mr
Mahdi Khalili Hezarjaribi
(Institut für Angewandte Physik, Technische Universität Braunschweig)
Dr
Uwe Rossow
(Institut für Angewandte Physik, Technische Universität Braunschweig)