Identification of differentially expressed biclusters for unsupervised patient stratification

95
Nicht eingeplant
20m
Von-Melle-Park 4

Von-Melle-Park 4

Poster

Beschreibung

Unexplored molecular heterogeneity of human diseases causes treatment inefficacy and hinders the investigation of causative disease mechanisms. Since the number and frequencies of disease subtypes are usually unknown, unsupervised methods are applied to omics data to identify patients subgroups with similar molecular profiles. Here, we present UnPaSt, a novel biclustering algorithm for unsupervised patient stratification and demonstrate its superior performance compared to traditionally used clustering, factorization, and biclustering methods in benchmarks with simulated and real data. Moreover, besides accurate identification of well-known PAM50 subtypes of breast cancer, UnPaSt detected the rare neuroendocrine subtype, which was overlooked in previous analyses due to its low frequency.

Keywords

patient stratification
clustering
biclustering
disease heterogeneity
omics

Find me @ my poster 1,2,3,4

Autoren

Michael Hartung (Universität Hamburg) Andreas Maier (Institute for Computational Systems Biology) Fernando Miguel Delgado Chaves (Universität Hamburg) Yuliya Burankova (Technical University of Munich, University of Hamburg, Germany) Olga Isaeva (The Netherlands Cancer Institute) Daniel He (University of British Columbia) Katharina Kaufmann (Universität Hamburg) Fábio Malta de Sá Patroni (University of Campinas) Alexey Savchik (ACMetric) Zoe Chervontseva (Universität Hamburg) Niklas Probul (Universität Hamburg) Alexandra Abisheva (Altius Institute for Biomedical Sciences) Evgenia Zotova (Altius Institute for Biomedical Sciences) Olga Tsoy (Universität Hamburg) David Blumenthal (Universität Erlangen) Prof. Martin Ester (Simon Fraser University; Vancouver Prostate Centre) Olga Zolotareva (Universität Hamburg) Jan Baumbach (Universität Hamburg)

Präsentationsmaterialien

Es gibt derzeit keine Materialien.