Predicting multiple conformations of flexible proteins

85
Nicht eingeplant
20m
Von-Melle-Park 4

Von-Melle-Park 4

Poster

Beschreibung

We developed a pipeline for predicting multiple conformations of flexible proteins. A range of conformations is first generated using the deep learning model AlphaFold2 (AF2), which are then filtered using distance constraints and solvent-accessibility data from crosslinking mass spectrometry (XL-MS), using two scoring functions we developed: the crosslink and monolink probability scores (XLP, MP). The scoring functions were first benchmarked on 200 proteins (each with 300 structural decoys) using simulated XL-MS data, before being tested on an experimental test dataset. We showed that AF2 alone can only identify two out of six conformations in the test dataset, while a combination of AF2 and XLP/MP was able to identify four of six conformations, highlighting the complementarity between AF2 and XL-MS.

Keywords

protein structure prediction
computational modeling

Find me @ my poster 2,4

Autor

Karen Manalastas-Cantos (Center for Data and Computing in Natural Science, Universität Hamburg)

Co-Autoren

Dr. Kish Adoni (Institute of Structural and Molecular Biology, Division of Biosciences, University College London) Dr. Matthias Pfeifer (Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany) Birgit Märtens (Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany) Prof. Kay Grünewald (Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany) Prof. Konstantinos Thalassinos (Institute of Structural and Molecular Biology, Division of Biosciences, University College London) Prof. Maya Topf (Leibniz-Institut für Virologie (LIV), Centre for Structural Systems Biology (CSSB), Hamburg, Germany)

Präsentationsmaterialien

Es gibt derzeit keine Materialien.