Automated symptom evaluation using sensor data from wearables in patients with Parkinson's disease utilizing explainable AI

102
Nicht eingeplant
20m
Von-Melle-Park 4

Von-Melle-Park 4

Poster

Sprecher

Alexander Wiederhold (Universität Hamburg)

Beschreibung

Parkinson’s disease is a neurodegenerative disorder that affects primarily dopaminergic neurons often showing a characteristic tremor or akinesis. While the severity estimation remains a stationary UPDRS scoring, we aim for an additional sensor-driven approach to develop an automated symptom evaluation for a second opinion. Our team collected over 200 million samples of accelerometer data and over 5000 corresponding UPDRS labels at the neurology department of the University Hospital Hamburg-Eppendorf. We implemented an explainable AI algorithm as well as a high-performance baseline model. First results show a high accuracy even for explainable classifiers. Consequently, we determined that a simple algorithm might be superior to a complex model in clinical routine to support clinicians’ decision process.

Keywords

Parkinson
Neurology
Sensor-driven-approach
AI
Accelerometer-data

Autoren

Alexander Wiederhold (Universität Hamburg) Qi Rui Zhu (Universität Osnabrück) Sören Spiegel (Universität Hamburg) Frank Ückert (Universität Hamburg) Christopher Lukas Gundler (Universität Hamburg)

Präsentationsmaterialien

Es gibt derzeit keine Materialien.