When Recommender Systems Select Political News

73
Nicht eingeplant
20m
Von-Melle-Park 4

Von-Melle-Park 4

Poster

Beschreibung

News recommender systems (NRS) determine news exposure for digital publics. However, the effects of NRSs on users remain understudied. This study examines how diversity of political news within NRSs can influence political news use, knowledge, and attitudes. We implemented an NRS that gathers news from a variety of news outlets, identifies political party representations in the articles, and recommends them based on a diversity model in a smartphone app. Results are based on a field experiment conducted during the state elections in Lower Saxony, Germany. While NRSs can increase knowledge about minority parties, they do not change voting behavior. These findings underscore the complex nature of NRSs in the political context and the need for interdisciplinary collaboration in their design.

Keywords

Computational methods
Journalism
News recommender systems
Voting behavior

Autoren

Hendrik Meyer (Journalistik und Kommunikationswissenschaft, Universität Hamburg) Jessica Kunert (Universität Mainz) Juliane Lischka (Journalistik und Kommunikationswissenschaft, Universität Hamburg) Katharina Kleinen-von Königslöw (Journalistik und Kommunikationswissenschaft, Universität Hamburg) Laura Laugwitz (Journalistik und Kommunikationswissenschaft, Universität Hamburg) Lucien Heitz (Universität Zürich) Nadja Schaetz (Journalistik und Kommunikationswissenschaft, Universität Hamburg) Rana Abdullah (Universität Hamburg)

Präsentationsmaterialien