Aug 12 – 16, 2024
Von-Melle-Park 8
Europe/Berlin timezone

Systems of quadratic growth backward SDEs in general filtration with no driving martingale

Aug 14, 2024, 11:00 AM
30m
Seminarraum 206 (Von-Melle-Park 8)

Seminarraum 206

Von-Melle-Park 8

Contributed Talk MS 09: Stochastic Modeling and Control MS 09: Stochastic Modeling and Control

Speaker

Tomasz Klimsiak (Nicolaus Copernicus University in Toruń)

Description

Let $(\Omega,\mathcal F,P)$ be a complete probability space and $\mathbb F:=(\mathcal F_t)$ be a filtration on $(\Omega,\mathcal F,P)$ satisfying usual conditions. Let $T>0$, $\nu$ be a natural number, and $\xi$ be an $\mathbb R^\nu$-valued $\mathcal F_T$-adapted random vector. We shall present the existence results for the following system of quadratic growth (with respect to $M$) backward SDEs of the form
\begin{equation}
Y^j_t=\xi^j+\int_t^TdF^j(s,Y,M)-\int_t^TdM^j_s,\quad j=1,\dots,\nu,
\end{equation}
where for any pair $(Y,M)\in \mathcal S^2_{\mathbb F}(0,T)\times \mathcal M^2_0(0,T)$ the mapping
\begin{equation}
[0,T]\ni s\longmapsto F^j(s,Y,M) \in \mathbb R
\end{equation}
is a finite variation continuous $\mathbb F$-adapted process with $F(0,Y,M)=0$. Then some application will be presented.

Authors

Tomasz Klimsiak (Nicolaus Copernicus University in Toruń) Ms Jasmina Ðorđević (Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia)

Presentation materials

There are no materials yet.